Problem

Determine the largest intensity wo of the distributed load that the beam can support if...

Determine the largest intensity wo of the distributed load that the beam can support if the beam can withstand a maximum shear force of Vmax = 1200 lb and a maximum bending moment of = 600 lb • ft.

Step-by-Step Solution

Solution 1

Free-body diagram:

Considering moments about \(A\), we get

$$ \begin{aligned} \sum M_{A} &=0 \\ \left(R_{B} \times 12\right) &=\left(w_{0} \times 6 \times 3\right)+\left(2 \times w_{0} \times 6\right)(6+3) \\ 12 R_{B} &=18 w_{0}+108 w_{0} \\ R_{B} &=10.5 w_{0} \end{aligned} $$

By applying the equation of equilibrium for beam in \(y\)-direction:

$$ \begin{aligned} \sum F_{y} &=0 \\ R_{A}+R_{B} &=6 w_{0}+\left(6 \times 2 w_{0}\right) \\ R_{A} &=18 w_{0}-10.5 w_{0} \\ R_{A} &=7.5 w_{0} \end{aligned} $$

For \(A C\)

By applying the equation of equilibrium for beam in \(y\)-direction:

$$ \begin{aligned} \sum F_{y} &=0 \\ R_{A} &=\left(w_{0} \times x\right)+v \\ 7.5 w_{0} &=w_{0} x+v \\ v &=7.5 w_{0}-w_{0} x \end{aligned} $$

Considering moments, we get

$$ \begin{aligned} \sum M_{A} &=0 \\ M &=\left(w_{0} \times x \times \frac{x}{2}\right)+(v \times x) \\ M &=\frac{w_{0} x^{2}}{2}+7.5 w_{0} x-w_{0} x^{2} \\ M &=7.5 w_{0} x-\frac{w_{0} x^{2}}{2} \end{aligned} $$

For \(C B\)

By applying the equation of equilibrium for beam in \(y\)-direction:

$$ \begin{aligned} \sum F_{y} &=0 \\ v &=2 w_{0}(12-x)-R_{B} \\ v &=24 w_{0}-2 w_{0} x-10.5 w_{0} \\ v &=13.5 w_{0}-2 w_{0} x \end{aligned} $$

Considering moments, we get

$$ \begin{aligned} &\sum M=0 \\ &M=R_{B}(12-x)-2 w_{0}(12-x) \frac{(12-x)}{2} \\ &M=10.5(12-x)-w_{0}(12-x)^{2} \end{aligned} $$

By comparing the shear force values, the maximum value is at \(B\), and its value is given as 1200

lb. Hence

$$ \begin{aligned} v_{\max } &=10.5 w_{0} \\ 1200 &=10.5 w_{0} \\ w_{0}=& 114.286 \mathrm{lb} \ldots \ldots \end{aligned} $$

The bending moment reaches maximum value at zero shear force. Now from the shear force function in \(C B\) region, the zero shear force is located at

$$ \begin{aligned} &v=13.5 w_{0}-2 w_{0} x \\ &0=13.5(114.286)-2(114.286) x \\ &x=6.75 \mathrm{ft} \end{aligned} $$

Now the maximum moment value is

$$ \begin{aligned} &M_{\max }=-w_{0}(12-6.75)^{2}+10.5(12-6.75) \\ &M_{\max }=-27.5625 w_{0}+55.125 w_{0} \\ &M_{\max }=27.5625 w_{0} \end{aligned} $$

But given that magnitude of maximum moment is 600 lb-ft. Hence

$$ \begin{gathered} M_{\max }=27.5625 w_{0} \\ 600=27.5625 w_{0} \\ w_{0}=21.7687 \mathrm{lb} \ldots \ldots (2) \end{gathered} $$

By comparing the values of distributed load from equations (1) and (2), the largest is \(w_{0}=21.7687 \mathrm{lb}\)

Add your Solution
Textbook Solutions and Answers Search