Question

Question 1: Given an undirected connected graph so that every edge belongs to at least one...

Question 1: Given an undirected connected graph so that every edge belongs to at least one simple cycle (a cycle is simple if be vertex appears more than once). Show that we can give a direction to every edge so that the graph will be strongly connected.

Question 2: Given a graph G(V, E) a set I is an independent set if for every uv el, u #v, uv & E. A Matching is a collection of edges {ei} so that no two edges in the matching share a common vertex. A vertex cover is a collection U CV of vertices so that for every edge uv E E either u EU or v EU.

1. Show that the largest size matching in a graph is no larger than the size of an arbitrary vertex cover in the graph.

2. Show that if I is an independent set then G(V – I) (namely, the graph with vertices V - I, restricted to edge with both endpoints in V - I is) a Vertex Cover.

3. Give an example for a graph so that the Maximum Matching is strictly smaller than the minimum Vertex Cover

4. A clique is a collection C of vertices U so that for every uv EC, uv E E. Say that we are given an algorithm that finds a clique of maximum size in time f(n). Give an O(n) + f(n) time algorithm to find the maximum independent set and the minimum vertex cover in the graph

0 0
Add a comment Improve this question Transcribed image text
Answer #1

For an undirected connected graph where every edge belongs to at least one simple cycle, it is always possible to give a direction to every edge so that the graph will be strongly connected.

A directed graph is strongly connected if there is a path between all pairs of vertices.

To get a path between every pair, give the direction of every edge in the same direction so that it makes a circle(simple loop). This way every vertices will be connected.

For eg, for this undirected graph,

we can make the following strongly connected directed graph


Add a comment
Know the answer?
Add Answer to:
Question 1: Given an undirected connected graph so that every edge belongs to at least one...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Given an undirected connected graph so that every edge belongs to at least one simple cycle...

    Given an undirected connected graph so that every edge belongs to at least one simple cycle (a cycle is simple if be vertex appears more than once). Show that we can give a direction to every edge so that the graph will be strongly connected. Please write time complexity.

  • 2) Let G ME) be an undirected Graph. A node cover of G is a subset...

    2) Let G ME) be an undirected Graph. A node cover of G is a subset U of the vertex set V such that every edge in E is incident to at least one vertex in U. A minimum node cover MNC) is one with the lowest number of vertices. For example {1,3,5,6is a node cover for the following graph, but 2,3,5} is a min node cover Consider the following Greedy algorithm for this problem: Algorithm NodeCover (V,E) Uempty While...

  • Definition: Given a Graph \(\mathrm{G}=(\mathrm{V}, \mathrm{E})\), define the complement graph of \(\mathrm{G}, \overline{\boldsymbol{G}}\), to be \(\bar{G}=(\mathrm{V},...

    Definition: Given a Graph \(\mathrm{G}=(\mathrm{V}, \mathrm{E})\), define the complement graph of \(\mathrm{G}, \overline{\boldsymbol{G}}\), to be \(\bar{G}=(\mathrm{V}, E)\) where \(E\) is the complement set of edges. That is \((\mathrm{v}, \mathrm{w})\) is in \(E\) if and only if \((\mathrm{v}, \mathrm{w}) \notin \mathrm{E}\) Theorem: Given \(\mathrm{G}\), the complement graph of \(\mathrm{G}, \bar{G}\) can be constructed in polynomial time. Proof: To construct \(G\), construct a copy of \(\mathrm{V}\) (linear time) and then construct \(E\) by a) constructing all possible edges of between vertices in...

  • Let G = (V;E) be an undirected and unweighted graph. Let S be a subset of the vertices. The graph...

    Let G = (V;E) be an undirected and unweighted graph. Let S be a subset of the vertices. The graph induced on S, denoted G[S] is a graph that has vertex set S and an edge between two vertices u, v that is an element of S provided that {u,v} is an edge of G. A subset K of V is called a killer set of G if the deletion of K kills all the edges of G, that is...

  • Show that the following three problems are polynomial reducible to each other Determine, for a given...

    Show that the following three problems are polynomial reducible to each other Determine, for a given graph G = <V, E> and a positive integer m ≤ |V |, whether G contains a clique of size m or more. (A clique of size k in a graph is its complete subgraph of k vertices.) Determine, for a given graph G = <V, E> and a positive integer m ≤ |V |, whether there is a vertex cover of size m...

  • Give an example of a graph G with at least 10 vertices such that the greedy...

    Give an example of a graph G with at least 10 vertices such that the greedy 2-approximation algorithm for Vertex-Cover given below is guaranteed to produce a suboptimal vertex cover. Algorithm Vertex CoverApprox(G): Input: A graph G Output: A small vertex cover C for G while G still has edges do select an edge e (v, w) of G add vertices v and w to C for each edge f incident to v or w do remove f from G...

  • Reachability. You are given a connected undirected graph G = (V, E ) as an adjacency...

    Reachability. You are given a connected undirected graph G = (V, E ) as an adjacency list. The graph G might not be connected. You want to fill-in a two-dimensional array R[,] so that R[u,v] is 1 if there is a path from vertex u to vertex v. If no such path exists, then R[u,v] is 0. From this two-dimensional array, you can determine whether vertex u is reachable from vertex v in O(1) time for any pair of vertices...

  • 2. Let G = (V, E) be an undirected connected graph with n vertices and with...

    2. Let G = (V, E) be an undirected connected graph with n vertices and with an edge-weight function w : E → Z. An edge (u, v) ∈ E is sparkling if it is contained in some minimum spanning tree (MST) of G. The computational problem is to return the set of all sparkling edges in E. Describe an efficient algorithm for this computational problem. You do not need to use pseudocode. What is the asymptotic time complexity of...

  • (a) Given a graph G = (V, E) and a number k (1 ≤ k ≤...

    (a) Given a graph G = (V, E) and a number k (1 ≤ k ≤ n), the CLIQUE problem asks us whether there is a set of k vertices in G that are all connected to one another. That is, each vertex in the ”clique” is connected to the other k − 1 vertices in the clique; this set of vertices is referred to as a ”k-clique.” Show that this problem is in class NP (verifiable in polynomial time)...

  • Let G = (V, E, W) be a connected weighted graph where each edge e has...

    Let G = (V, E, W) be a connected weighted graph where each edge e has an associated non-negative weight w(e). We call a subset of edges F subset of E unseparating if the graph G' = (V, E\F) is connected. This means that if you remove all of the edges F from the original edge set, this new graph is still connected. For a set of edges E' subset of E the weight of the set is just the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT