Question

A barbell is mounted on a nearly frictionless axle through its center. The low-mass rod has a length d= 0.16 m, and each ball has a mass m = 0.1 kg.

A barbell is mounted on a nearly frictionless axle through its center. The low-mass rod has a length d= 0.16 m, and each ball has a mass m = 0.1 kg. At this instant, there are two forces of equal magnitude F applied to the system as shown, with the directions indicated, and at this instant the angular velocity is 60 radians/s, counterclockwise, and the angle α = 20 degrees. In the next 0.003 s, the angular momentum relative to the center increases by an amount 5 x 10-4 kg.m2/s. What is the magnitude of each force? 

image.png

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A barbell is mounted on a nearly frictionless axle through its center. The low-mass rod has a length d= 0.16 m, and each ball has a mass m = 0.1 kg.
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A barbell consists of two small balls, each with mass 500 grams (0.5 kg), at the...

    A barbell consists of two small balls, each with mass 500 grams (0.5 kg), at the ends of a very low mass rod of length d= 20 cm (0.2 m). The center of the barbell is mounted on the end of a low mass rigid rod of length b= 0.3 m (see Figure). The apparatus is started in such a way that although the rod rotates clockwise with angular speed 80 rad/s, the barbell maintains its vertical orientation. Your answer...

  • The assembly shown in the figure below consists of a thin rod of length l = 23.9 cm and mass m = 1.20 kg with a solid ball of diameter d = 10.0 cm and mass M = 2.00 kg attached to its top.

    The assembly shown in the figure below consists of a thin rod of length l = 23.9 cm and mass m = 1.20 kg with a solid ball of diameter d = 10.0 cm and mass M = 2.00 kg attached to its top. The assembly is free to pivot about a frictionless axle through the bottom of the rod. The assembly is initially vertical and at rest when it starts to rotate clockwise. (a) After the combination rotates through 90...

  • A thin rod of mass m and length l rests on a frictionless table and is struck at a point l/4 from its center of mass by a clay ball of mass m moving at speed v.

    A thin rod of mass m and length l rests on a frictionless table and is struck at a point l/4 from its center of mass by a clay ball of mass m moving at speed v. The ball sticks to the rod. If the rod is free to pivot about a frictionless pin at its center, find the angular velocity of the rod after the collision. Also find the velocity of the point at the top of the rod...

  • a uniform rod of mass1 = 4.7 kg and legth 80 cm lies horizontal frictionless table,...

    a uniform rod of mass1 = 4.7 kg and legth 80 cm lies horizontal frictionless table, with a vertical frictionless axle passing through a point P, located 25cm from center of mass of the rod. Also a particle of mass 2 = 1.2 kg is attached to the rod 5 cm from the far end. A. Find the moment of inertia of the rod only about point P. The system is initially rotating counter clock wise about P at 6.40...

  • The uniform thin rod in the figure below has mass M = 4.00 kg and length...

    The uniform thin rod in the figure below has mass M = 4.00 kg and length L = 2.21 m and is free to rotate on a frictionless pin. At the instant the rod is released from rest in the horizontal position, find the magnitude of the rod's angular acceleration, the tangential acceleration of the rod's center of mass, and the tangential acceleration of the rod's free end. (a) the rod's angular acceleration (in rad/s2) rad/s2 (b) the tangential acceleration...

  • 1. A thin rod of mass M and length d hangs vertically from a frictionless pivot...

    1. A thin rod of mass M and length d hangs vertically from a frictionless pivot attached to one end. A piece of clay of mass m moving horizontally at a speed v hits the rod a distance x from the pivot and sticks to it. Discussion Questions: (In the first 5-10 min a random group will be selected to explain.) • What “type” of collision is happening? What is and is not conserved? • Consider the analogous linear momentum...

  • A uniform wheel of mass 10.0 kg and radius 0.400 m is mounted rigidly on an axle through its center

    A uniform wheel of mass 10.0 kg and radius 0.400 m is mounted rigidly on an axle through its center (see figure . The radius of the axle is 0.200 m, and the rotational inertia of the wheel-axle combination about its central axis is 0.600 kg·m2. The wheel is initially at rest at the top of a surface that is inclined at angleθ = 43.6o with the horizontal; the axle rests on the surface while the wheel extends into a...

  • Two small objects each of mass m = 0.2 kg are connected by a lightweight rod...

    Two small objects each of mass m = 0.2 kg are connected by a lightweight rod of length d = 1.5 m (see the figure). At a particular instant they have velocities whose magnitudes are v_1 = 36 m/s and v_2 = 50 m/s and are subjected to external forces whose magnitudes are F_1 = 63 N and F_2 = 26 N. The distance h = 0.4 m, and the distance w = 0.6 m. The system is moving in...

  • A uniform thin rod of length 0.95 m and mass 1.2 kg lies in a horizontal...

    A uniform thin rod of length 0.95 m and mass 1.2 kg lies in a horizontal plane and rotates in that plane about a pivot at one of its ends. The rod makes one rotation every 0.39 second and rotates clockwise as viewed from above its plane of rotation. A)Find the magnitude of the rod’s angular momentum about its rotation axis, in units of kgm^/s. b) find the rotational kinetic energy, in joules, of the rod described in part (a)....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT