Question

The spring is compressed 15 cm and launches a 200 g block from rest. The horizontal...

The spring is compressed 15 cm and launches a 200 g block from rest. The horizontal floor is frictionless but the incline is not with a coefficient of kinetic friction equal to µk = 0.15 between block and incline. Spring constant k = 2000 N/m.

(a) Find the horizontal distance d the block moves through the air.

(b) If the block breaks up into two pieces in mid-flight from internal forces, one piece consisting of 2/3 the mass of the block lands at a distance 1.5d to the right from the top of the incline. Where does the other piece land?

2.0 m 200 g 1459

2.0 m 200 g 1459
0 0
Add a comment Improve this question Transcribed image text
Answer #1

the et a point A be at oclint top of the 45° batwee porat of compa iron fhaor em Applying work eneY and point A change in K-Eco-ordinate aris Aeaning mxd 3d + mxd 3 d d O top o the fnclene at Lands the other piea So/ porofectle moton. at the orign of

Add a comment
Know the answer?
Add Answer to:
The spring is compressed 15 cm and launches a 200 g block from rest. The horizontal...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • the spring in the figure has a spring constant of 1200N/m. It is compressed 16.0cm,then launches...

    the spring in the figure has a spring constant of 1200N/m. It is compressed 16.0cm,then launches a 200g block. The horizontal surface is frictionless, but the blocks coefficient of kinetic friction on the incline is 0.180. Note: the height is 2.0m and the angle 45 degrees a)what distance d does the block sail through the air?

  • The spring in the figure below has a spring constant of 1150 N/. It is compressed...

    The spring in the figure below has a spring constant of 1150 N/. It is compressed 28 cm, then launches a 200 g block. The horizontal surface is frictionless, but the block's coefficient of kinetic friction on the incline is 0.20. What distance d does the block sail through the air? Enter a numbor 2.0 m 200g 5°

  • The spring in the figure has a spring constant of 1000 N/m. It is compressed 13.0...

    The spring in the figure has a spring constant of 1000 N/m. It is compressed 13.0 cm, then launches a 200 g block. The horizontal surface is frictionless, but the block's coefficient of kinetic friction on the incline is 0.210. (Figure 1) - Part A What distance d does the block sail through the air? Express your answer with the appropriate units. C: A 0 = ? Value Units Submit Request Answer Figure 1 of 1 > < Return to...

  • In the figure, a 2.6 kg block is accelerated from rest by a compressed spring of...

    In the figure, a 2.6 kg block is accelerated from rest by a compressed spring of spring constant 660 N/m. The block leaves the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction ?k = 0.272. The frictional force stops the block in distance D = 7.9 m. What are (a) the increase in the thermal energy of the block In the figure, a 2.6 kg block is accelerated from...

  • In the figure below, a 4.0 kg block is accelerated from rest by a compressed spring...

    In the figure below, a 4.0 kg block is accelerated from rest by a compressed spring of spring constant 600 N/m. The block leaves the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction uk= 0.30.The frictional force stops the block in the distance of D = 8.0 m. -- No friction a) Find the increase in the thermal energy of the block-floor system b) What is the original compression...

  • In the figure, a 2.8 kg block is accelerated from rest by a compressed spring of...

    In the figure, a 2.8 kg block is accelerated from rest by a compressed spring of spring constant 650 N/m. The block leaves the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction μk = 0.290. The frictional force stops the block in distance D = 7.8 m. What are (a) the increase in the thermal energy of the block–floor system, (b) the maximum kinetic energy of the block, and...

  • In the figure, a 4.2 kg block is accelerated from rest by a compressed spring of...

    In the figure, a 4.2 kg block is accelerated from rest by a compressed spring of spring constant 650 N/m. The block leaves the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction WK = 0.264. The frictional force stops the block in distance D = 7.8 m. What are (a) the increase in the thermal energy of the block-floor system, (b) the maximum kinetic energy of the block, and...

  • In the figure below, a 3.0 kg block is accelerated from rest by a compressed spring...

    In the figure below, a 3.0 kg block is accelerated from rest by a compressed spring of spring constant 640 N/m. The block leaves the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction μk = 0.25. The frictional force stops the block in distance 6.2 m. (a) What is the increase in the thermal kinetic energy of the block floor system? ___J (b) What was the maximum kinetic energy...

  • In the figure, a 3.5 kg block is accelerated from rest by a compressed spring of...

    In the figure, a 3.5 kg block is accelerated from rest by a compressed spring of spring constant 640 N/m. The block leaves the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction _k-0.25. The frictional force stops the block in distance D-78 m. What is the original compression distance of the spring? Consider 9 - 9.8 m/s -No friction D (4) Select one: 0.25 m 1.2 m 0.78 m...

  • A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is...

    A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0300 m . The spring has force constant 830 N/m . The coefficient of kinetic friction between the floor and the block is 0.45 . The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0170 m from its initial position? (At this...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT