Question

A solid sphere, made of an insulating material, has a volume charge density of ρ =...

A solid sphere, made of an insulating material, has a volume charge density of ρ = a/r

What is the electric field within the sphere as a function of the radius r? Note: The volume element dV for a spherical shell of radius r and thickness dr is equal to 4πr2dr. (Use the following as necessary: a, r, and ε0.), where r is the radius from the center of the sphere, a is constant, and a > 0.

magnitude  E=

(b)

What If? What if the charge density as a function of r within the charged solid sphere is given by ρ = a/r^2 ? Find the new magnitude and direction of the electric field within the sphere at radius r. (Use the following as necessary: a, r, and ε0.)

magnitude E=

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a)

ρ = volume charge density = a/r

small charge enclosed is given as

dq = ρ dV

dq = (a/r ) ( 4πr2dr )

dq = 4π a r dr

total charge is given as

Q = \int_{0}^{r}4π a r dr

Q = 4π a r2/2

using gauss's law

E A = Q/\epsilon _{o}

E (4π r2) = 4π a r2/(2\epsilon _{o})

E = a/(2\epsilon _{o})

B)

ρ = volume charge density = a/r2

small charge enclosed is given as

dq = ρ dV

dq = (a/r2 ) ( 4πr2dr )

dq = 4π a dr

total charge is given as

Q = \int_{0}^{r}4π a dr

Q = 4π a r

using gauss's law

E A = Q/\epsilon _{o}

E (4π r2) = 4π a r/(2\epsilon _{o})

E = a/(2r\epsilon _{o})

Add a comment
Know the answer?
Add Answer to:
A solid sphere, made of an insulating material, has a volume charge density of ρ =...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (a) A solid sphere, made of an insulating material, has a volume charge density of p...

    (a) A solid sphere, made of an insulating material, has a volume charge density of p , where r is the radius from the center of the sphere, a is constant, and a >0. What is the electric field within the sphere as a function of the radius r? Note: The volume element dv for a spherical shell of radius r and thickness dr is equal to 4tr2dr. (Use the following as necessary: a, r, and co.) magnitude E direction...

  • 3rd Question Consider a solid insulating sphere of radius b with nonuniform charge density ρ-ar, where...

    3rd Question Consider a solid insulating sphere of radius b with nonuniform charge density ρ-ar, where a is a constant. Find the charge contained within the radius r< bas in the figure. The volume element dV for a spherical shell of radius r and thickness dr is equal to 4 π r2 dr.

  • A solid insulating sphere of radius R has a non-uniform charge density ρ = Ar2 ,...

    A solid insulating sphere of radius R has a non-uniform charge density ρ = Ar2 , where A is a constant and r is measured from the center of the sphere. a) Show that the electric field outside the sphere (r > R) is E = AR5 /(5εor 2 ). b) Show that the electric field inside the sphere (r < R) is E = AR3 /(5εo). Hint: The total charge Q on the sphere is found by integrating ρ...

  • A sphere of radius R has total charge Q. The volume charge density (C/m3) within the...

    A sphere of radius R has total charge Q. The volume charge density (C/m3) within the sphere is ρ(r)=C/r2, where C is a constant to be determined. The charge within a small volume dV is dq=ρdV. The integral of ρdV over the entire volume of the sphere is the total charge Q. Use this fact to determine the constant C in terms of Q and R. Hint: Let dV be a spherical shell of radius r and thickness dr. What...

  • A solid, insulating sphere of radius a has a uniform charge density throughout its volume and a total charge of Q.

    A solid, insulating sphere of radius a has a uniform charge density throughout its volume and a total charge of Q. Concentric with this sphere is an uncharged, conducting hollow sphere whose inner and outer radii are b and c as shown in the figure below. We wish to understand completely the charges and electric fields at all locations. (Assume Q is positive. Use the following as necessary: Q, ε0 , a, b, c and r. Do not substitute numerical...

  • part 1 of 3 Consider a solid insulating sphere of radius b with nonuniform charge density...

    part 1 of 3 Consider a solid insulating sphere of radius b with nonuniform charge density p = ar, where a is a constant. Find the charge contained within the radius r<b as in the figure. The volume element dV for a spherical shell of radius r and thickness dr is equal to 47 r2 dr. part 2 of 3 If a = 5 x 10-6 C/m' and b = 1 m, find E at r = 0.6 m. The...

  • A solid, insulating sphere of radius a has a uniform charge density ρ and a total charge Q

    Guided Problem 4 -Gauss's LawA solid, insulating sphere of radius a has a uniform charge density ρ and a total charge Q. Concentric with this sphere is an uncharged, conducting hollow sphere whose inner and outer radii are b and c as shown in the following figure. (a) Find the magnitude of the electric field in the regions: r<a, a<r<b, and r>c. (b) Determine the induced charge per unit area on the inner and outer surfaces of the hollow sphere.Solution scheme:...

  • A solid sphere of nonconducting material has a uniform positive charge density ρ (i.e. positive charge...

    A solid sphere of nonconducting material has a uniform positive charge density ρ (i.e. positive charge is spread evenly throughout the volume of the sphere; ρ=Q/Volume). A spherical region in the center of the solid sphere is hollowed out and a smaller hollow sphere with a total positive charge Q (located on its surface) is inserted. The radius of the small hollow sphere R1, the inner radius of the solid sphere is R2, and the outer radius of the solid...

  • A solid, insulating sphere of radius a has a uniform charge density of P and a total charge of Q.

    A solid, insulating sphere of radius a has a uniform charge density of P and a total charge of Q. Concentric with this sphere is a conducting spherical shell with inner and outer radii are b and c, and having a net charge -3Q. (a) (5 pts.)Use Gauss's law to derive an expression for the electric field as a function of r in the regions r < a (b) (4 pts.) Use Gauss's law to derive an expression for the electric field...

  • A smooth spherical shell of electricity insulating material with outer radius a and inner radius a/2....

    A smooth spherical shell of electricity insulating material with outer radius a and inner radius a/2. Inside of this sphere, also with a radius of a/2, is a conducting solid sphere. The conducting sphere has an excess amount of charge q. The density of the insulating sphere is p. A) What must be the value of p so that the total charge of this setup is 0? B) Using the value of p from part (A), what are the magnitude...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT