Question

A solid insulating sphere of radius R has a non-uniform charge density ρ = Ar2 ,...

A solid insulating sphere of radius R has a non-uniform charge density ρ = Ar2 , where A is a constant and r is measured from the center of the sphere.

a) Show that the electric field outside the sphere (r > R) is E = AR5 /(5εor 2 ).

b) Show that the electric field inside the sphere (r < R) is E = AR3 /(5εo).

Hint: The total charge Q on the sphere is found by integrating ρ dV, over appropriate limits inside or outside the sphere. Also, dV can be treated as very thin, spherical shells where dV = 4πr 2 dr.

Please be as clear and detailed as possible, explaining each step

0 0
Add a comment Improve this question Transcribed image text
Answer #1

for second part consider a Gausian surface which is a sphere of radius r , concentric with given charged sphere. Then Gauss' Law is applied.

We have to take the charge enclosed within the Gaussian surface ( from r=0 to r = r)

Add a comment
Know the answer?
Add Answer to:
A solid insulating sphere of radius R has a non-uniform charge density ρ = Ar2 ,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A solid sphere, made of an insulating material, has a volume charge density of ρ =...

    A solid sphere, made of an insulating material, has a volume charge density of ρ = a/r What is the electric field within the sphere as a function of the radius r? Note: The volume element dV for a spherical shell of radius r and thickness dr is equal to 4πr2dr. (Use the following as necessary: a, r, and ε0.), where r is the radius from the center of the sphere, a is constant, and a > 0. magnitude  E= (b)...

  • 3rd Question Consider a solid insulating sphere of radius b with nonuniform charge density ρ-ar, where...

    3rd Question Consider a solid insulating sphere of radius b with nonuniform charge density ρ-ar, where a is a constant. Find the charge contained within the radius r< bas in the figure. The volume element dV for a spherical shell of radius r and thickness dr is equal to 4 π r2 dr.

  • A solid, insulating sphere of radius a has a uniform charge density ρ and a total charge Q

    Guided Problem 4 -Gauss's LawA solid, insulating sphere of radius a has a uniform charge density ρ and a total charge Q. Concentric with this sphere is an uncharged, conducting hollow sphere whose inner and outer radii are b and c as shown in the following figure. (a) Find the magnitude of the electric field in the regions: r<a, a<r<b, and r>c. (b) Determine the induced charge per unit area on the inner and outer surfaces of the hollow sphere.Solution scheme:...

  • (a) A solid sphere, made of an insulating material, has a volume charge density of p...

    (a) A solid sphere, made of an insulating material, has a volume charge density of p , where r is the radius from the center of the sphere, a is constant, and a >0. What is the electric field within the sphere as a function of the radius r? Note: The volume element dv for a spherical shell of radius r and thickness dr is equal to 4tr2dr. (Use the following as necessary: a, r, and co.) magnitude E direction...

  • Consider a charged sphere with the following charge density ρ(r) =(ρ0(1− r Rmax) r ≤ Rmax...

    Consider a charged sphere with the following charge density ρ(r) =(ρ0(1− r Rmax) r ≤ Rmax 0 r > Rmax Using Gauß’ law, calculate the electric field (a) ~ E1 inside the sphere (i.e. r ≤ Rmax), (b) ~ E2 outside the sphere (i.e r ≥ Rmax), (c) Check that lim r→Rmax ~ E1 = lim r→Rmax ~ E2. Reminder: Due to spherical symmetryRRRV ρ(r0)dxdydz =Rr 0 ρ(r0)4πr02dr0 Please provide an explanation for the solution. Problem 5. Consider a charged...

  • Charge is distributed throughout a spherical volume of radius R with a density ρ ar where...

    Charge is distributed throughout a spherical volume of radius R with a density ρ ar where α is a constant. an risthe distance from the center of the sphere. Determine the electric field due to the charge at a point a distance r from the center that is inside the sphere, and at a point a distance r from the center that is outside the sphere. (Enter the radial component of the electric field. Use the following as necessary: R,...

  • A sphere of radius R has total charge Q. The volume charge density (C/m3) within the...

    A sphere of radius R has total charge Q. The volume charge density (C/m3) within the sphere is ρ(r)=C/r2, where C is a constant to be determined. The charge within a small volume dV is dq=ρdV. The integral of ρdV over the entire volume of the sphere is the total charge Q. Use this fact to determine the constant C in terms of Q and R. Hint: Let dV be a spherical shell of radius r and thickness dr. What...

  • A solid, insulating sphere of radius a has a uniform charge density of P and a total charge of Q.

    A solid, insulating sphere of radius a has a uniform charge density of P and a total charge of Q. Concentric with this sphere is a conducting spherical shell with inner and outer radii are b and c, and having a net charge -3Q. (a) (5 pts.)Use Gauss's law to derive an expression for the electric field as a function of r in the regions r < a (b) (4 pts.) Use Gauss's law to derive an expression for the electric field...

  • A hollow insulating sphere of inner radius "a" and outer radius "b" has a non-uniform charge...

    A hollow insulating sphere of inner radius "a" and outer radius "b" has a non-uniform charge per unit volume p that varies with distance r from the center of the sphere according to the expression p=Cr^2, where C is a given constant. a) what is the total charge Q contained in the hollow sphere b) what is the electric field at a point inside the sphere, a< r < b

  • Find the electric field due to a charged insulating sphere (radius R) with non-uniform charge density...

    Find the electric field due to a charged insulating sphere (radius R) with non-uniform charge density rho=beta*r^2 with beta>0. Find the electric field due to a charged insulating sphere (radius R) with non-uniform charge density rho=beta*r^2 with beta greaterthan 0.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT