Question

please i need help asap Problem 1 The acceleration of a particle moving only on a...

please i need help asap

Problem 1

The acceleration of a particle moving only on a horizontal xy plane is given by a=3ti+4tj, where a is in meters per seconds squared and t is in seconds, at t=0, the position vector r=(20.0m)i+(40.0m)j locates the particles, which then has the velocity vector v=(5.00m/s)i+(2.00m's)j. at t=4.00s, what are (a) its position vector in unit-vector notation and (b) the angle between its direction of travel and the positive direction of the x axis?

Problem 2

A particle starts from the origine at t=0 with a velocity of 8.0j m/s and moves in the xy plane with constant acceleration (4.0i+2.0j)m/s^2. when the particle's x coordinate is 29m, what are its (a) y coordinate and (b) speed?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

If you have doubt in any step, please ask me in comment. i will answer it.

Add a comment
Know the answer?
Add Answer to:
please i need help asap Problem 1 The acceleration of a particle moving only on a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • At t = 0, a particle moving in the xy plane with constant acceleration has a...

    At t = 0, a particle moving in the xy plane with constant acceleration has a velocity of vector v i = (3.00 i - 2.00 j) m/s and is at the origin. At t = 3.60 s, the particle's velocity is vector v = (8.90 i + 7.70 j) m/s. (Use the following as necessary: t. Round your coefficients to two decimal places.) (a) Find the acceleration of the particle at any time t. vector a = m/s2 (b)...

  • At t = 0, a particle moving in the xy plane with constant acceleration has a...

    At t = 0, a particle moving in the xy plane with constant acceleration has a velocity of vector v i = (3.00 i - 2.00 j) m/s and is at the origin. At t = 3.70 s, the particle's velocity is vector v = (7.40 i + 6.90 j) m/s. (Use the following as necessary: t. Round your coefficients to two decimal places.) (a) Find the acceleration of the particle at any time t. vector a = m/s2 (b)...

  • Problem 16 •16 GO The velocity v of a particle moving in the xy plane is...

    Problem 16 •16 GO The velocity v of a particle moving in the xy plane is given by v = (6.0t - 4.014)i + 8.0j, with v in meters per second and t (>0) in seconds. (a) What is the acceleration when t = 3.0 s? (b) When (if ever) is the acceleration zero? (c) When (if ever) is the velocity zero? (d) When (if ever) does the speed equal 10 m/s? X = 60 - 8t - drei &...

  • Chapter 02, Problem 018 (e) the acceleration of the particle at 4.00 s. (d) What is...

    Chapter 02, Problem 018 (e) the acceleration of the particle at 4.00 s. (d) What is the maximum positive coordinate reatn of the particdle at the instant the particle is not moving maximum positive velocity reached by the particle and (g) (other than at t 0)? () Determine the average velocity of the particle between t 0 and t -4.00s. s is given by x-13.02-4.00r, where x is in meters and t is in seconds. Determine (a) the position, (b)...

  • A particle moves in the x-y plane such that its position is defined by r (2t...

    A particle moves in the x-y plane such that its position is defined by r (2t i+ 4tj) ft, where t is in seconds. Determine the radial and transverse components of the particle's velocity and acceleration whent-2 s.

  • 1) 2D kinematics (rectangular coordinates) - A particle moving in the x-y plane has an acceleration...

    1) 2D kinematics (rectangular coordinates) - A particle moving in the x-y plane has an acceleration in the y-direction given as ay -3t ft/s2 and an x-position ofx 3t + 2 ft. When t0, yo3ft and Vo, -4ft/s. a) Derive expressions for x, vx, ax, V, Vy, ay as functions of time. b) At times t 0,1,2 seconds, calculate the magnitude of velocity and the angle it makes with the x-axis. c) At times t 0,1,2 seconds, calculate the magnitude...

  • The position ModifyingAbove r With right-arrow of a particle moving in an xy plane is given...

    The position ModifyingAbove r With right-arrow of a particle moving in an xy plane is given by ModifyingAbove r With right-arrow equals left-parenthesis 4 t cubed minus 3 t right-parenthesis ModifyingAbove i With caret plus left-parenthesis 6 minus 2 t Superscript 4 Baseline right-parenthesis ModifyingAbove j With caret with ModifyingAbove r With right-arrow in meters and t in seconds. In unit-vector notation, calculate (a)ModifyingAbove r With right-arrow, (b)v Overscript right-arrow EndScripts, and (c)a Overscript right-arrow EndScripts for t = 2...

  • The position r of a particle moving in an xy plane is given by r =...

    The position r of a particle moving in an xy plane is given by r = (4.00t^3 - 4.00t) i + (4.00 - 1.00t^4) j with r in meters and t in seconds. In unit-vector notation, calculate (a) r, (b) V, and (c) a for t = 2.00 s, (d) What is the angle between the positive direction of the x axis and a line tangent to the particle's path at t = 2.00 s? Give your answer in the...

  • A particle moves in the xy plane with constant acceleration. At time t=0 s, the position...

    A particle moves in the xy plane with constant acceleration. At time t=0 s, the position vector for the particle is r=9.70mx^+4.30my^. The acceleration is given by the vector a=8.00m/s^2x^+3.90m/s^2y^. The velocity vector at time t=o s is v=2.80m/sx^ - 7.00m/sy^. What is the magnitude of the position vector at time t= 2.10 s? What is the angle between the position vector and the positive x-axis at time t= 2.10 s?

  • The vector position of a 3.55 g particle moving in the xy plane varies in time...

    The vector position of a 3.55 g particle moving in the xy plane varies in time according to r1 = (3î + 3ĵ)t + 2ĵt2 where t is in seconds and r is in centimeters. At the same time, the vector position of a 5.80 g particle varies as r2 = 3î − 2ît2 − 6ĵt. (a) Determine the vector position (in cm) of the center of mass of the system at t = 2.60 s. b) Determine the linear...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT