Question

Two blocks, M1M1 and M2M2, are connected by a massless stringthat passes over a massless...

Two blocks, M1 and M2, are connected by a massless string that passes over a massless pulley as shown in the figure. M1 has a mass of 7.75 kg and rests on an incline of θ1=73.5° . M2 rests on an incline of θ2=19.5°. Find the mass of block M2 so that the system is in equilibrium (i.e., not accelerating). All surfaces are frictionless.

image.png

2 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

Use the equilibrium of the two masses and write their equations of motion using Newton’s law of motion taking acceleration to be zero. Solve the equation to find the value of mass as shown belowRM223 Magsinoz acceleration a =0 equation of motion for Me Magsing, -T= Me a Megsing hos but azo = Magsina, = T... © for, M2,

Add a comment
Know the answer?
Add Answer to:
Two blocks, M1M1 and M2M2, are connected by a massless stringthat passes over a massless...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Two blocks with masses M1 and M2 are connected by a massless string that passes over...

    Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=42.5 with coefficient of kinetic friction μ1=0.205. M2 has a mass of 7.25 kg and is on an incline of θ2=31.5 with coefficient of kinetic friction μ2=0.105. The two‑block system is in motion with the block of mass M2 sliding down the ramp. Find the magnitude...

  • Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown

    Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=43.5° with coefficient of kinetic friction μ1=0.205 . M2 has a mass of 6.15 kg and is on an incline of θ2=35.5° with coefficient of kinetic friction μ2=0.105. The two-block system is in motion with the block of mass M2 sliding down the ramp.Find the magnitude...

  • Two blocks of masses M and M2 are connected by a massless string that passes over...

    Two blocks of masses M and M2 are connected by a massless string that passes over a massless pulley as shown in the figure. M2, which has a mass of 25.5 kg, rests on a long ramp of angle θ-33.5. Friction can be ignored in this problem Find the value of the mass M1 for which the two blocks are in equilibrium (i.e. not accelerating) Number kg figure not to scale

  • Two blocks of masses M1 and M2 are connected by a massless string that passes over...

    Two blocks of masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown in the figure. M2. which has a mass of 13.5 kg, rests on a long ramp of angle θ=15.5°. Friction can be ignored in this problem. Find the value of the mass Mi for which the two blocks are in equilibrium (i.e., not accelerating). 

  • Two blocks with masses M1 and M2 are connected by a massless string that passes over...

    Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of 41.5° with coefficient of kinetic friction μ1 = 0.205. M2 has a mass of 6.25 kg and is on an incline of 31.5° with coefficient of kinetic friction μ2 = 0.105. Find the magnitude of the acceleration of M2 down the incline.

  • Two blocks with masses M1 and M2 are connected by a massless string that passes over...

    Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of 47.5° with coefficient of kinetic friction μ1 = 0.205. M2 has a mass of 8.05 kg and is on an incline of 33.5° with coefficient of kinetic friction μ2 = 0.105. Find the magnitude of the acceleration of M2 down the incline.

  • Two blocks are connected by a massless rope over a massless, frictionless pulley, as shown in the figure.

    Two blocks are connected by a massless rope over a massless, frictionless pulley, as shown in the figure. The mass of block 2 is m2 = 10.5 kg, and the coefficient of kinetic friction between block 2 and the incline is μk = 0.200. The angle of the incline is 27.5°. If block 2 is moving up the incline at constant speed, what is the mass m1 of block 1? 

  • Two blocks with masses Mi and M2 are connected by a massless string that passes over...

    Two blocks with masses Mi and M2 are connected by a massless string that passes over a massless pulley as shown. Mi has a mass of 2.25 kg and is on an incline of o, 49.5, with coefficient of kinetic friction μί-0205. M2 has a mass of 6.85 kg and is on an incline of Oz 35.5. with coefficient of kinetic friction μ,-0.105. Find the magnitude of the acceleration of M2 down the incline magnitude of M2 m/s Figure is...

  • Two blocks with masses m1 and m2 are connected by a massless string over a frictionless...

    Two blocks with masses m1 and m2 are connected by a massless string over a frictionless pulley. Block 1 sits on a frictionless horizontal surface and block 2 sits on a plane inclined at an angle θ above the horizontal. The coefficient of friction between block 2 and the incline is µk. The pulley, which is a uniform disk, has a mass mp and a radius R. When you release the blocks, both blocks slide without the string slipping on...

  • Two blocks with masses ?1 and ?2 are connected by a massless string that passes over...

    Two blocks with masses ?1 and ?2 are connected by a massless string that passes over a massless pulley as shown. ?1 has a mass of 2.25 kg and is on an incline of ?1=43.5∘ with coefficient of kinetic friction ?1=0.205 . ?2 has a mass of 6.75 kg and is on an incline of ?2=35.5∘ with coefficient of kinetic friction ?2=0.105 . The two‑block system is in motion with the block of mass ?2 sliding down the ramp. Find...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT