Question

Two blocks with masses M1 and M2 are connected by a massless string that passes over...

Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of 47.5° with coefficient of kinetic friction μ1 = 0.205. M2 has a mass of 8.05 kg and is on an incline of 33.5° with coefficient of kinetic friction μ2 = 0.105. Find the magnitude of the acceleration of M2 down the incline.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Two blocks with masses M1 and M2 are connected by a massless string that passes over...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two blocks with masses M1 and M2 are connected by a massless string that passes over...

    Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of 41.5° with coefficient of kinetic friction μ1 = 0.205. M2 has a mass of 6.25 kg and is on an incline of 31.5° with coefficient of kinetic friction μ2 = 0.105. Find the magnitude of the acceleration of M2 down the incline.

  • Two blocks with masses M1 and M2 are connected by a massless string that passes over...

    Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=42.5 with coefficient of kinetic friction μ1=0.205. M2 has a mass of 7.25 kg and is on an incline of θ2=31.5 with coefficient of kinetic friction μ2=0.105. The two‑block system is in motion with the block of mass M2 sliding down the ramp. Find the magnitude...

  • Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown

    Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=43.5° with coefficient of kinetic friction μ1=0.205 . M2 has a mass of 6.15 kg and is on an incline of θ2=35.5° with coefficient of kinetic friction μ2=0.105. The two-block system is in motion with the block of mass M2 sliding down the ramp.Find the magnitude...

  • Two blocks with masses Mi and M2 are connected by a massless string that passes over...

    Two blocks with masses Mi and M2 are connected by a massless string that passes over a massless pulley as shown. Mi has a mass of 2.25 kg and is on an incline of o, 49.5, with coefficient of kinetic friction μί-0205. M2 has a mass of 6.85 kg and is on an incline of Oz 35.5. with coefficient of kinetic friction μ,-0.105. Find the magnitude of the acceleration of M2 down the incline magnitude of M2 m/s Figure is...

  • Two blocks with masses ?1 and ?2 are connected by a massless string that passes over...

    Two blocks with masses ?1 and ?2 are connected by a massless string that passes over a massless pulley as shown. ?1 has a mass of 2.25 kg and is on an incline of ?1=43.5∘ with coefficient of kinetic friction ?1=0.205 . ?2 has a mass of 6.75 kg and is on an incline of ?2=35.5∘ with coefficient of kinetic friction ?2=0.105 . The two‑block system is in motion with the block of mass ?2 sliding down the ramp. Find...

  • w Expand Question 13 of 20 Two blocks with masses M and M2 are connected by...

    w Expand Question 13 of 20 Two blocks with masses M and M2 are connected by massless string that passes over a massless pulley as shown Mi has a mass of 2.25 kg and is on an incline of o,-41.5 with coefficient of kinetic friction M-0205. M2 has a mass of 525 kg and is on an incline of 33.5 with coefficient of kinetic friction M 0.105 Find the magnitude of the acceleration of M2 down the incline. magnitude of...

  • Two blocks of masses M and M2 are connected by a massless string that passes over...

    Two blocks of masses M and M2 are connected by a massless string that passes over a massless pulley as shown in the figure. M2, which has a mass of 25.5 kg, rests on a long ramp of angle θ-33.5. Friction can be ignored in this problem Find the value of the mass M1 for which the two blocks are in equilibrium (i.e. not accelerating) Number kg figure not to scale

  • Two blocks of masses M1 and M2 are connected by a massless string that passes over...

    Two blocks of masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown in the figure. M2. which has a mass of 13.5 kg, rests on a long ramp of angle θ=15.5°. Friction can be ignored in this problem. Find the value of the mass Mi for which the two blocks are in equilibrium (i.e., not accelerating). 

  • Two blocks with masses m1 and m2 are connected by a massless string over a frictionless...

    Two blocks with masses m1 and m2 are connected by a massless string over a frictionless pulley. Block 1 sits on a frictionless horizontal surface and block 2 sits on a plane inclined at an angle θ above the horizontal. The coefficient of friction between block 2 and the incline is µk. The pulley, which is a uniform disk, has a mass mp and a radius R. When you release the blocks, both blocks slide without the string slipping on...

  • The two masses "m1" and "m2" shown in the figure connected by a massless string and...

    The two masses "m1" and "m2" shown in the figure connected by a massless string and are being dropped by a constant horizontal force F a rough horizontal surface. F = 100 N, m1=10 kg, m2=15 kg coefficient kinetic friction between each mass and M_k= 0.2 expression: M2-->M1--> F Questions: 1) Calculate the friction force on M2 2) Calculate the acceleration of the system of the 2 masses 3) Calculate the tension T in the string. H Mz mi

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT