Question

In the diagram, Disk 1 has a moment of inertia of 4.20 kg · m2 and...

In the diagram, Disk 1 has a moment of inertia of 4.20 kg · m2 and is rotating in the counterclockwise direction with an angular speed of 6.90 rad/s about a frictionless rod passing through its center. A second disk rotating clockwise with an angular speed of 8.50 rad/s falls from above onto Disk 1. The two then rotate as one in the clockwise direction with an angular speed of 2.80 rad/s. Determine the moment of inertia of Disk 2.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

In this total angular momentum is conserved 2 (8.5 rad/s)-(4.2 kgm2) (6.9 rads) (4.2 kgm +)(2.8 rad/s) Thus, moment of inert

Add a comment
Know the answer?
Add Answer to:
In the diagram, Disk 1 has a moment of inertia of 4.20 kg · m2 and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In the diagram, disk 1 has a moment of inertia of 3.2 kg · m2 and...

    In the diagram, disk 1 has a moment of inertia of 3.2 kg · m2 and is rotating in the counterclockwise direction with an angular velocity of 7.3 rad/s about a frictionless rod passing through its center. A second disk rotating clockwise with an angular velocity of 8.9 rad/s falls from above onto disk 1. The two then rotate as one in the clockwise direction with an angular velocity of 1.8 rad/s. Determine the moment of inertia, in kg ·...

  • 1 points OSuniPrys! 11.3 WA030. My Notes Ask Your In the diagram, Disk 1 has a...

    1 points OSuniPrys! 11.3 WA030. My Notes Ask Your In the diagram, Disk 1 has a moment of inertia of 3.80 kg m2 and is rotating in the counterclockwise direction with an angular speed of 7.50 rad/s about a frictionless rod passing through its center. A second disk rotating clockwise with an angular speed of 8.30 rad/s falls from above onto Disk 1. The two then rotate as one in the dlockwise direction with an angular speed of 2.80 rad/s....

  • A 35.0-9 object connected to a spring with a force constant of 45.0 N/m oscillates with...

    A 35.0-9 object connected to a spring with a force constant of 45.0 N/m oscillates with an amplitude of 8.00 cm on a frictionless, horizontal surface. (a) Find the total energy of the system. (h) Find the speed of the object when its position is 1.30 cm. (Let 0 cm be the position of equilibrium.) mi's (c) Find the kinetic energy when its position is 3.00 cm. m (d) Find the potential energy when its position is 3.00 cm. V...

  • A 55.0-kg woman stands at the rim of a horizontal turntable having a moment of inertia of 540 kg · m2 and a radius of...

    A 55.0-kg woman stands at the rim of a horizontal turntable having a moment of inertia of 540 kg · m2 and a radius of 2.00 m. The turntable is initially at rest and is free to rotate about a frictionless vertical axle through its center. The woman then starts walking around the rim clockwise (as viewed from above the system) at a constant speed of 1.50 m/s relative to the Earth. (a) In what direction does the turntable rotate?...

  • Two disks are rotating about the same axis. Disk A has a moment of inertia of...

    Two disks are rotating about the same axis. Disk A has a moment of inertia of 3.3 kg · m2 and an angular velocity of +7.4 rad/s. Disk B is rotating with an angular velocity of -9.3 rad/s. The two disks are then linked together without the aid of any external torques, so that they rotate as a single unit with an angular velocity of -2.5 rad/s. The axis of rotation for this unit is the same as that for...

  • A 65.0-kg woman stands at the rim of a horizontal turntable having a moment of inertia...

    A 65.0-kg woman stands at the rim of a horizontal turntable having a moment of inertia of 480 kg middot m^2 and a radius of 2.00 m. The turntable is initially at rest and is free to rotate about a frictionless vertical axle through its center. The woman then starts walking around the rim clockwise (as viewed from above the system) at a constant speed of 1.50 m/s relative to the Earth. (a) In what direction does the turntable rotate?...

  • Question 3 10 pts A horizontal disk with moment of inertia 0.36 kg-m2 is rotating with...

    Question 3 10 pts A horizontal disk with moment of inertia 0.36 kg-m2 is rotating with an angular speed of 6.5 rad/sec. A point mass of 0.52 kg is gently placed on the outer edge of the disk in a manner so that no torque is applied. The mass then rotates with the disk at an angular speed of 4.37 rad/sec. What is the radius of the disk in meters? 0.38 0.28 0.88 0.58

  • Figure shows a disk with moment of inertia J=0.5 kg-m2 that is initially rotating at an...

    Figure shows a disk with moment of inertia J=0.5 kg-m2 that is initially rotating at an angular velocity 0 0 = 40 rad/s. A flexible shaft with torsional spring constant k = 65 N-m/rad connected to the disk. The disk is subjected to friction, which is modeled by linear viscous friction torque bò, with friction coefficient b = 1.0 N-m-s/rad. The input torque in the clockwise direction is a step function Tin(t) = 3.0U(t) N-m. Flexible shaft, k Disk Viscous...

  • A disk with moment of inertia 9.15 × 10−3 kg∙m^2 initially rotates about its center at...

    A disk with moment of inertia 9.15 × 10−3 kg∙m^2 initially rotates about its center at angular velocity 5.32 rad/s. A non-rotating ring with moment of inertia 4.86 × 10−3 kg∙m^2 right above the disk’s center is suddenly dropped onto the disk. Finally, the two objects rotate at the same angular velocity ?? about the same axis. There is no external torque acting on the system during the collision. Please compute the system’s quantities below. 1. Initial angular momentum ??...

  • 24 4 points Conservation of angular momentum: A disk with moment of inertia I1 = 3kgm...

    24 4 points Conservation of angular momentum: A disk with moment of inertia I1 = 3kgm rotates about a frictionless, vertical axle with angular speed wi = 8Rad/s. A second disk, this one having moment of inertia 12 = 1kgm and initially not rotating, drops onto the first disk. Because of friction between the surfaces, the two eventually reach the same angular speed W2 . What is w2? 13 Before After 24 Rad/s 12 Rad/s 6 Rad/s 16 Rad/s 4...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT