Question

1 points OSuniPrys! 11.3 WA030. My Notes Ask Your In the diagram, Disk 1 has a moment of inertia of 3.80 kg m2 and is rotating in the counterclockwise direction with an angular speed of 7.50 rad/s about a frictionless rod passing through its center. A second disk rotating clockwise with an angular speed of 8.30 rad/s falls from above onto Disk 1. The two then rotate as one in the dlockwise direction with an angular speed of 2.80 rad/s. Determine the moment of inertia of Disk 2. kg m2 Disk 2 Disk 1 Additional Materials eBook Submit Answer Save Progrs Practice Ancther Version

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
1 points OSuniPrys! 11.3 WA030. My Notes Ask Your In the diagram, Disk 1 has a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In the diagram, Disk 1 has a moment of inertia of 4.20 kg · m2 and...

    In the diagram, Disk 1 has a moment of inertia of 4.20 kg · m2 and is rotating in the counterclockwise direction with an angular speed of 6.90 rad/s about a frictionless rod passing through its center. A second disk rotating clockwise with an angular speed of 8.50 rad/s falls from above onto Disk 1. The two then rotate as one in the clockwise direction with an angular speed of 2.80 rad/s. Determine the moment of inertia of Disk 2.

  • In the diagram, disk 1 has a moment of inertia of 3.2 kg · m2 and...

    In the diagram, disk 1 has a moment of inertia of 3.2 kg · m2 and is rotating in the counterclockwise direction with an angular velocity of 7.3 rad/s about a frictionless rod passing through its center. A second disk rotating clockwise with an angular velocity of 8.9 rad/s falls from above onto disk 1. The two then rotate as one in the clockwise direction with an angular velocity of 1.8 rad/s. Determine the moment of inertia, in kg ·...

  • A 35.0-9 object connected to a spring with a force constant of 45.0 N/m oscillates with...

    A 35.0-9 object connected to a spring with a force constant of 45.0 N/m oscillates with an amplitude of 8.00 cm on a frictionless, horizontal surface. (a) Find the total energy of the system. (h) Find the speed of the object when its position is 1.30 cm. (Let 0 cm be the position of equilibrium.) mi's (c) Find the kinetic energy when its position is 3.00 cm. m (d) Find the potential energy when its position is 3.00 cm. V...

  • Two disks are rotating about the same axis. Disk A has a moment of inertia of...

    Two disks are rotating about the same axis. Disk A has a moment of inertia of 3.3 kg · m2 and an angular velocity of +7.4 rad/s. Disk B is rotating with an angular velocity of -9.3 rad/s. The two disks are then linked together without the aid of any external torques, so that they rotate as a single unit with an angular velocity of -2.5 rad/s. The axis of rotation for this unit is the same as that for...

  • 24 4 points Conservation of angular momentum: A disk with moment of inertia I1 = 3kgm...

    24 4 points Conservation of angular momentum: A disk with moment of inertia I1 = 3kgm rotates about a frictionless, vertical axle with angular speed wi = 8Rad/s. A second disk, this one having moment of inertia 12 = 1kgm and initially not rotating, drops onto the first disk. Because of friction between the surfaces, the two eventually reach the same angular speed W2 . What is w2? 13 Before After 24 Rad/s 12 Rad/s 6 Rad/s 16 Rad/s 4...

  • Two disks are rotating about the same axis. Disk A has a moment of inertia of...

    Two disks are rotating about the same axis. Disk A has a moment of inertia of 4.50 kg·m2 and an angular velocity of +1.17 rad/s. Disk B is rotating with an angular velocity of -6.93 rad/s. The two disks are then linked together without the aid of any external torques, so that they rotate as a single unit with an angular velocity of -3.80 rad/s. The axis of rotation for this unit is the same as that for the separate...

  • The disk shown above has radius 2.50m and mass of 10.0kg. It has an angular velocity...

    The disk shown above has radius 2.50m and mass of 10.0kg. It has an angular velocity of 9.50 rad/s at t 0s about its center O, moving in the CounterClockwise direction. It also experiences a Clockwise angular acceleration of 1.00 rad/s2. a) What is the disk's moment of inertia? b) What Kinetic Energy does the disk possess at t-0.00s and at t-6.00s? c) How long does it take for the disk to stop rotating momentarily? d) What is the disks'...

  • A 55.0-kg woman stands at the rim of a horizontal turntable having a moment of inertia of 540 kg · m2 and a radius of...

    A 55.0-kg woman stands at the rim of a horizontal turntable having a moment of inertia of 540 kg · m2 and a radius of 2.00 m. The turntable is initially at rest and is free to rotate about a frictionless vertical axle through its center. The woman then starts walking around the rim clockwise (as viewed from above the system) at a constant speed of 1.50 m/s relative to the Earth. (a) In what direction does the turntable rotate?...

  • Two disks are rotating about the same axis. Disk A has a moment of inertia of...

    Two disks are rotating about the same axis. Disk A has a moment of inertia of 4.45 kg.m2 and an angular velocity of +4.87 rad/s. Disk B is rotating with an angular velocity of -7.28 rad/s. The two disks are then linked together without the orques, so that they rotate as a single unit with an angular velocity of -3.59 rad/s. The axis of rotation for this unit is the same as that for the separate disks. What is the...

  • The disk ntating with a constant angular accelerstion Assurse the axle is frictionkess Ca) Calcud...

    please answer 5 and 6 im sorry thats the closest pic i can get to it the disk ntating with a constant angular accelerstion Assurse the axle is frictionkess Ca) Calcudlate the magnituke and direction of the net torpsue prodhuced by the twe lorces b) Determine the magnitude of the angular acceleration of the disk rad/s Cakulate the angular momentum, in kg mP/s, of an ice skater spinning at 6.00 rew/s given is moment of inertia is 0 rew/s given...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT