Question

please answer 5 and 6

the disk ntating with a constant angular accelerstion Assurse the axle is frictionkess Ca) Calcudlate the magnituke and direc

My Notes O Ask Your is mounted on an axle in such a way that it is free to rotate about a horizontal axis. The radius of the

Ssbmit Answer Save Progress Practice Another Version My Notes Ask Your Te (a) Calculate the angular momentum, in kg m/s, of a

im sorry thats the closest pic i can get to it

the disk ntating with a constant angular accelerstion Assurse the axle is frictionkess Ca) Calcudlate the magnituke and direction of the net torpsue prodhuced by the twe lorces b) Determine the magnitude of the angular acceleration of the disk rad/s Cakulate the angular momentum, in kg mP/s, of an ice skater spinning at 6.00 rew/s given is moment of inertia is 0 rew/s given his moment of inertia is 0.350 k kg-ms (h) He reduces his rate of spn (his anquiar velocity) by extending his arms and increasing his momeet of inertia Find the value of his menofinertis, in kg mithis anglar welocity drops to 1.55 rev/s kg m2 ) Suppose instead he keeps hes arms in and allows friction with the ice to slow ham to 1.00 revls. What average torgue, in N m, was exented if this takes 70 secondh? Indicate the drection with the sign af yu e rotation is in the positive direction) N m
My Notes O Ask Your is mounted on an axle in such a way that it is free to rotate about a horizontal axis. The radius of the disk is 0.450 m and its mass is 21 5 kg. As shown in the diagram, two forces F 70.0 N and A uniform sulid disk F2 - 120 N applind to the disk sets the disk rotating with a constant angular acceleration. Assume the axle is frictionless. (a) Celculate the magnitude and direction of the net torque produced by the two forces direction (b) Determine the magnitude of the anguiar acceieration of the disk rad/s
Ssbmit Answer Save Progress Practice Another Version My Notes Ask Your Te (a) Calculate the angular momentum, in kg m/s, of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.350 kg m2 kg m2/s (b) He reduces his rate of spin (his anguiar velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia, in ㎡ his ang lar velocity drops to iss revs kg kg·m/ (c) Suppose instead he keeps his arms in and allows friction with the ice to slow him to 3.00 rev/s. What average torque, i enswer. Assume that the skaters rotation is in the positive direction.) n N m, was exerted if this takes 17.0 seconds? (Indicate the direction with the sign of your
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Angular aast accaleriaion 2 호 X 21. SX (0.4S XO.45) 2215 km13.2= 1,02 ) We-27 T2 13.2 132 2TTX \ SS ,= 13, 2x7 11 = 1.35kg m2 ニ17.03,

Add a comment
Know the answer?
Add Answer to:
The disk ntating with a constant angular accelerstion Assurse the axle is frictionkess Ca) Calcud...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Calculate the angular momentum, in kg · m2/s, of an ice skater spinning at 6.00 rev/s...

    Calculate the angular momentum, in kg · m2/s, of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.330 kg · m2. (a) Calculate the angular momentum, in kg . m/s, of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.330 kg . m2. kg. m/s (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his...

  • (a) Calculate the angular momentum (in kg.m2/s) of an ice skater spinning at 6.00 rev/s given...

    (a) Calculate the angular momentum (in kg.m2/s) of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.470 kg.m2 kg-m2/s (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kg m-) if his angular velocity drops to 1.00 rev/s. kg-m2 (c) suppose instead he keeps his arms in and allows friction with the ice to slow...

  • (a) Calculate the angular momentum of an ice skater spinning at 6.00 rev/s given his moment...

    (a) Calculate the angular momentum of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.300 kg · m2. _____kg · m2/s (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia if his angular velocity drops to 1.75 rev/s. ______kg · m2 (c) Suppose instead he keeps his arms in and allows friction with the ice to...

  • (a) Calculate the angular momentum (in kg•m?/s) of an Ice skater spinning at 6.00 rev/s given...

    (a) Calculate the angular momentum (in kg•m?/s) of an Ice skater spinning at 6.00 rev/s given his moment of inertila is 0.350 kg-m?. kg-m/s (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kg-m? if his angular velocity drops to 2.05 rev/s. kom? (c) Suppose instead he keeps his arms in and allows friction with the ice to slow him...

  • (a) Calculate the angular momentum (in kg.m/5) of an ice skater spinning at 6.00 rev/s given...

    (a) Calculate the angular momentum (in kg.m/5) of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.370 kg.m. kg-m/s (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kg-m2) if his angular velocity drops to 1.70 rev/s. kg.m (c) Suppose instead he keeps his arms in and allows friction with the ice to slow him...

  • (a) Calculate the angular momentum (in kg.m"/s) of an ice skater spinning at 6.00 rev/s given...

    (a) Calculate the angular momentum (in kg.m"/s) of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.470 kg-m kg-m /s (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kg-m2) if his angular velocity drops to 1.35 rev/s. (c) Suppose instead he keeps his arms in and allows friction with the ice to slow him...

  • (a) Calculate the angular momentum (in kg-m/s) of an ice skater spinning at 6.00 rav/s given...

    (a) Calculate the angular momentum (in kg-m/s) of an ice skater spinning at 6.00 rav/s given his moment of inertia is 0.470 kg m? kg-m/s (b) He reduces his rate of spin (his angular velocity) by extending wis arms and increasing his moment of inertia Find the value of his moment of inertia (in kg) ir his angular velocity drops to 2.05 rev/s. kgim² (c) Suppose instead he keeps his arms in and allows friction with the ice to slow...

  • An ice skater is spinning at 6.8 rev/s and has a moment of inertia of 0.24...

    An ice skater is spinning at 6.8 rev/s and has a moment of inertia of 0.24 kg ⋅ m2. Calculate the angular momentum, in kilogram meters squared per second, of the ice skater spinning at 6.8 rev/s. He reduces his rate of rotation by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kilogram meters squared) if his rate of rotation decreases to 1.25 rev/s. Suppose instead he keeps his arms...

  • (a) Calculate the angular momentum of an ice skater spinning at 6.00 rev/s given his moment...

    (a) Calculate the angular momentum of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.400kg⋅m20.400kg⋅m2  (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia if his angular velocity decreases to 1.25 rev/s. (c) Suppose instead he keeps his arms in and allows friction of the ice to slow him to 3.00 rev/s. What average torque was exerted...

  • Problem 19: sig.gif?tid=2N74-D1-D6-44-AC90-13475 An ice skater is spinning at 6.2 rev/s and has a moment of inertia of 0.36 kg ⋅ m2.

    Problem 19:  An ice skater is spinning at 6.2 rev/s and has a moment of inertia of 0.36 kg ⋅ m2.Part (a) Calculate the angular momentum, in kilogram meters squared per second, of the ice skater spinning at 6.2 rev/s. Part (b) He reduces his rate of rotation by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kilogram meters squared) if his rate of rotation decreases to 0.75 rev/s. Part (c) Suppose instead he keeps his...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT