Question

The switch in the figure has been in position a for a long time. It is changed to position b at t=0s. a)What is...


The switch in the figure has been in position a for a long time. It is changed to position b at t=0s.

a)What is the charge Q on the capacitor immediately after the switch is closed?

b) What the current I through the resistor immediately after the switch is closed?

c) What is the charge Q on the capacitor at t=50^-6 s ?

d)What is the current I through the resistor at t=50^-6 s?

e) What is the charge Q on the capacitor at t=200^-6 s?

f)What is the current I through the resistor at t=200^-6 s?
0 0
Add a comment Improve this question Transcribed image text
Answer #1
Concepts and reason

The concept required to solve this problem is Capacitance.

Initially, calculate the expression for the charge on the capacitor. Later, find the current through resistor. Finally, calculate the charge and after through the capacitor after some time.

Fundamentals

The expression for the charge enclosed by the capacitor is as follows:

Q=CVQ = CV

Here, C is the capacitance and V is the voltage.

The current through the resistor immediately after the switch is closed using the equation I0=QRC{I_0} = \frac{Q}{{RC}} .

Here, R is the resistance of the resistor and C is the capacitance of the capacitor.

The expression for the charge on the capacitor is as follows:

Q=Q0etRCQ = {Q_0}{e^{\frac{{ - t}}{{RC}}}}

Here, Q0{Q_0} is the charge at time t=0.00st = 0.00{\rm{ s}}, t is the time, R is the resistance, and C is the capacitance.

The expression for the current at time is as follows:

I=I0etRCI = {I_0}{e^{\frac{{ - t}}{{RC}}}}

Here, I0{I_0} is the current at time t=0.00st = 0.00{\rm{ s}}.

(a)

Substitute 4.00μF4.00{\rm{ }}\mu {\rm{F}} for C and 9.00 V for V in the equation Q=CVQ = CV.

Q=(4.00μF)(9.00V)=(4.00μF)(106F1.00μF)(9.00V)=36×106C\begin{array}{c}\\Q = \left( {4.00{\rm{ }}\mu {\rm{F}}} \right)\left( {9.00{\rm{ V}}} \right)\\\\ = \left( {4.00{\rm{ }}\mu {\rm{F}}} \right)\left( {\frac{{{{10}^{ - 6}}{\rm{ F}}}}{{1.00{\rm{ }}\mu {\rm{F}}}}} \right)\left( {9.00{\rm{ V}}} \right)\\\\ = 36 \times {10^{ - 6}}{\rm{ C}}\\\end{array}

(b)

Substitute 36×106C36 \times {10^{ - 6}}{\rm{ C}} for Q, 25.0Ω25.0{\rm{ }}\Omega for R, and 4.00μF4.00{\rm{ }}\mu {\rm{F}} for C in the equation I0=QRC{I_0} = \frac{Q}{{RC}}.

I0=36×106C(25.0Ω)(4.00μF)=36×106C(25.0Ω)(4.00μF)(106F1.00μF)=0.36A\begin{array}{c}\\{I_0} = \frac{{36 \times {{10}^{ - 6}}{\rm{ C}}}}{{\left( {25.0{\rm{ }}\Omega } \right)\left( {4.00{\rm{ }}\mu {\rm{F}}} \right)}}\\\\ = \frac{{36 \times {{10}^{ - 6}}{\rm{ C}}}}{{\left( {25.0{\rm{ }}\Omega } \right)\left( {4.00{\rm{ }}\mu {\rm{F}}} \right)\left( {\frac{{{{10}^{ - 6}}{\rm{ F}}}}{{1.00{\rm{ }}\mu {\rm{F}}}}} \right)}}\\\\ = 0.36{\rm{ A}}\\\end{array}

(c)

Substitute 36×106C36 \times {10^{ - 6}}{\rm{ C}} for Q0{Q_0}, 50×106s50 \times {10^{ - 6}}{\rm{ s}}for t, 25.0Ω25.0{\rm{ }}\Omega for R, and 4.00μF4.00{\rm{ }}\mu {\rm{F}} for C in the equation Q=Q0etRCQ = {Q_0}{e^{\frac{{ - t}}{{RC}}}}.

Q=(36×106C)e50×106s(25.0Ω)(4.00μF)=(36×106C)e50×106s(25.0Ω)(4.00μF)(106F1.00μF)=21.8×106C\begin{array}{c}\\Q = \left( {36 \times {{10}^{ - 6}}{\rm{ C}}} \right){e^{\frac{{ - 50 \times {{10}^{ - 6}}{\rm{ s}}}}{{\left( {25.0{\rm{ }}\Omega } \right)\left( {4.00{\rm{ }}\mu {\rm{F}}} \right)}}}}\\\\ = \left( {36 \times {{10}^{ - 6}}{\rm{ C}}} \right){e^{\frac{{ - 50 \times {{10}^{ - 6}}{\rm{ s}}}}{{\left( {25.0{\rm{ }}\Omega } \right)\left( {4.00{\rm{ }}\mu {\rm{F}}} \right)\left( {\frac{{{{10}^{ - 6}}{\rm{ F}}}}{{1.00{\rm{ }}\mu {\rm{F}}}}} \right)}}}}\\\\ = 21.8 \times {10^{ - 6}}{\rm{ C}}\\\end{array}

(d)

Substitute 50×106s50 \times {10^{ - 6}}{\rm{ s}}for t, 0.36 A for I0{I_0},25.0Ω25.0{\rm{ }}\Omega for R, and 4.00μF4.00{\rm{ }}\mu {\rm{F}} for C in the equation I=I0etRCI = {I_0}{e^{\frac{{ - t}}{{RC}}}}.

I=(0.36A)e50×106s(25.0Ω)(4.00μF)=(0.36A)e50×106s(25.0Ω)(4.00μF)(106F1.00μF)=0.22A\begin{array}{c}\\I = \left( {0.36{\rm{ A}}} \right){e^{\frac{{ - 50 \times {{10}^{ - 6}}{\rm{ s}}}}{{\left( {25.0{\rm{ }}\Omega } \right)\left( {4.00{\rm{ }}\mu {\rm{F}}} \right)}}}}\\\\ = \left( {0.36{\rm{ A}}} \right){e^{\frac{{ - 50 \times {{10}^{ - 6}}{\rm{ s}}}}{{\left( {25.0{\rm{ }}\Omega } \right)\left( {4.00{\rm{ }}\mu {\rm{F}}} \right)\left( {\frac{{{{10}^{ - 6}}{\rm{ F}}}}{{1.00{\rm{ }}\mu {\rm{F }}}}} \right)}}}}\\\\ = 0.22{\rm{ A}}\\\end{array}

(e)

Substitute 36×106C36 \times {10^{ - 6}}{\rm{ C}} for Q0{Q_0}, 200μs200{\rm{ }}\mu {\rm{s}} for t, 25.0Ω25.0{\rm{ }}\Omega for R, and 4.00μF4.00{\rm{ }}\mu {\rm{F}} for C in the equation Q=Q0etRCQ = {Q_0}{e^{\frac{{ - t}}{{RC}}}}.

Q=(36×106C)e200μs(25.0Ω)(4.00μF)=(36×106C)e200μs(106s1.00μs)(25.0Ω)(4.00μF)(106F1.00μF)=4.87×106C\begin{array}{c}\\Q = \left( {36 \times {{10}^{ - 6}}{\rm{ C}}} \right){e^{\frac{{ - 200{\rm{ \mu s}}}}{{\left( {25.0{\rm{ }}\Omega } \right)\left( {4.00{\rm{ \mu F}}} \right)}}}}\\\\ = \left( {36 \times {{10}^{ - 6}}{\rm{ C}}} \right){e^{\frac{{ - 200{\rm{ }}\mu {\rm{s}}\left( {\frac{{{{10}^{ - 6}}{\rm{ s}}}}{{1.00{\rm{ \mu s}}}}} \right)}}{{\left( {25.0{\rm{ }}\Omega } \right)\left( {4.00{\rm{ \mu F}}} \right)\left( {\frac{{{{10}^{ - 6}}{\rm{ F}}}}{{1.00{\rm{ \mu F}}}}} \right)}}}}\\\\ = 4.87 \times {10^{ - 6}}{\rm{ C}}\\\end{array}

(f)

Substitute 200μs200{\rm{ \mu s}}for t, 0.36 A for I0{I_0},25.0Ω25.0{\rm{ }}\Omega for R, and 4.00μF4.00{\rm{ }}\mu {\rm{F}} for C in the equation I=I0etRCI = {I_0}{e^{\frac{{ - t}}{{RC}}}}.

I=(0.36A)e200μs(25.0Ω)(4.00μF)=(0.36A)e200μs(106s1.00μs)(25.0Ω)(4.00μF)(106F1.00μF)=0.048A\begin{array}{c}\\I = \left( {0.36{\rm{ A}}} \right){e^{\frac{{ - 200{\rm{ \mu s}}}}{{\left( {25.0{\rm{ }}\Omega } \right)\left( {4.00{\rm{ }}\mu {\rm{F}}} \right)}}}}\\\\ = \left( {0.36{\rm{ A}}} \right){e^{\frac{{ - 200{\rm{ \mu s}}\left( {\frac{{{{10}^{ - 6}}{\rm{ s}}}}{{1.00{\rm{ \mu s}}}}} \right)}}{{\left( {25.0{\rm{ }}\Omega } \right)\left( {4.00{\rm{ }}\mu {\rm{F}}} \right)\left( {\frac{{{{10}^{ - 6}}{\rm{ F}}}}{{1.00{\rm{ }}\mu {\rm{F }}}}} \right)}}}}\\\\ = 0.048{\rm{ A}}\\\end{array}

Ans: Part a

The charge on the capacitor immediately after the switch is closed is equal to36×106C36 \times {10^{ - 6}}{\rm{ C}}.

Add a comment
Know the answer?
Add Answer to:
The switch in the figure has been in position a for a long time. It is changed to position b at t=0s. a)What is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT