Question

A proton enters a parallel-plate capacitor traveling to the right at a speed of 1.276 x 10-5 m/s, as shown in the figure. The distance between the two plates is 1.59 cm


A proton enters a parallel-plate capacitor traveling to the right at a speed of 1.276 x 10-5 m/s, as shown in the figure. The distance between the two plates is 1.59 cm. The proton enters the capacitor halfway between the top plate and the bottom plate; that is, a distance r = 0.795 cm from each plate, as shown in the figure. The capacitor has a 2.75 x 10-4 N/C uniform electric field between the plates that points downward from the top plate to the bottom plate. Neglecting gravitational forces, what horizontal distance does the proton traverse before the proton hits the bottom plate?

image.png

0 0
Add a comment Improve this question Transcribed image text
Answer #1

acceleration acting on proton

a = E q / m

a = 2.75 10^-4* 1.6*10^-19 / (1.67*10^-27)

a = 26347.3 m/s^2

Considering motion along vertical

y = 0.5 at^2

0.795*10^-2 = 0.5* 26347.3* t^2

t = 7.768*10^-4 second

Horizontal distance travelled till this time

x = vt

x = 1.276*10^-5*7.768*10^-4

x = 9.91*10^-9 m

==========

do comment in case any doubt, will reply for sure . Goodluck

Add a comment
Know the answer?
Add Answer to:
A proton enters a parallel-plate capacitor traveling to the right at a speed of 1.276 x 10-5 m/s, as shown in the figure. The distance between the two plates is 1.59 cm
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A proton enters a parallel-plate capacitor traveling to the right at a speed of 1.276 x...

    A proton enters a parallel-plate capacitor traveling to the right at a speed of 1.276 x 10-5 m/s, as shown in the figure. The distance between the two plates is 1.62 cm. The proton enters the capacitor halfway between the top plate and the bottom plate; that is, a distance r = 0.810 cm from each plate, as shown in the figure. The capacitor has a 2.95 x 10* N/C uniform electric field between the plates that points downward from...

  • A parallel plate capacitor is formed with two plates separated by 5.00 mm as shown in...

    A parallel plate capacitor is formed with two plates separated by 5.00 mm as shown in Figure 1. Each plate is a 10.0 cm X 10.0 cm square. We do not know the charge on the plates. An electron beam is shot in from one edge of the capacitor. It enters the capacitor very close (call it 0 mm) from the top plate and travelling parallel to the plates. The electrons in the beam are moving at 1.50 × 107...

  • 6. A proton travels with a horizontal velocity, vo, and enters midway between the plates of...

    6. A proton travels with a horizontal velocity, vo, and enters midway between the plates of a parallel plate capacitor with an electric field of 3.2 x 10 N/C directed vertically downward, a plate width, w, of 2.35 cm and separation distance, d, of 1.84 mm. Find the minimum velocity, vo, the proton must have to pass through the plates.

  • A parallel plate capacitor is formed with two plates separated by 5.00 mm as shown in...

    A parallel plate capacitor is formed with two plates separated by 5.00 mm as shown in Figure 1. Each plate is a 10.0 cm X 10.0 cm square. We do not know the charge on the plates. An electron beam is shot in from one edge of the capacitor. It enters the capacitor very close (call it 0 mm) from the top plate and travelling parallel to the plates. The electrons in the beam are moving at 1.50 × 107...

  • A proton traveling at v= 4.65 x 10° m/s to the right enters the region between...

    A proton traveling at v= 4.65 x 10° m/s to the right enters the region between two parallel charged plates separated by a distance d = 5.09 cm that also contains a uniform magnetic field out of the page of field strength B = 8.47 ut. a What does the potential difference across the plates have to be for the proton to continue traveling at constant velocity? Express your answer using two decimal places. Your answer should be in V.

  • The figure below shows a proton entering a parallel-plate capacitor with a speed of 2.20×105 m/s....

    The figure below shows a proton entering a parallel-plate capacitor with a speed of 2.20×105 m/s. The proton travels a horizontal distance x = 7.20 cm through the essentially uniform electric field. The electric field of the capacitor has deflected the proton downward by a distance of d = 0.760 cm at the point where the proton exits the capacitor. (You can neglect the effects of gravity.) capacitor.png Using kinematics, find the vertical acceleration (including sign) of the proton in...

  • The figure below shows a proton entering a parallel-plate capacitor with a speed of 2.30×105 m/s....

    The figure below shows a proton entering a parallel-plate capacitor with a speed of 2.30×105 m/s. The proton travels a horizontal distance x = 5.30 cm through the essentially uniform electric field. The electric field of the capacitor has deflected the proton downward by a distance of d = 0.760 cm at the point where the proton exits the capacitor. (You can neglect the effects of gravity.) a)Using kinematics, find the vertical acceleration (including sign) of the proton in this...

  • The separation distance between the two plates of a parallel plate capacitor is 2.00 cm. An...

    The separation distance between the two plates of a parallel plate capacitor is 2.00 cm. An electron is at rest near the negative plate. When it is released, it accelerates and reaches the positive plate with a kinetic energy of 7.80 ✕ 10−15 J. What is the magnitude of the electric field in the region between the plates of the capacitor?

  • The figure below shows a proton entering a parallel-plate capacitor with a speed of 2.10 times...

    The figure below shows a proton entering a parallel-plate capacitor with a speed of 2.10 times 10^5 m/s. The proton travels a horizontal distance x = 5.20 cm through the essentially uniform electric field. The electric field of the capacitor has deflected the proton downward by a distance of d = 0.720 cm at the point where the proton exits the capacitor. (You can neglect the effects of gravity.) Using kinematics, find the vertical acceleration (including sign) of the proton...

  • 2. A parallel plate capacitor is formed with two plates separated by 5.00 mm as shown...

    2. A parallel plate capacitor is formed with two plates separated by 5.00 mm as shown in Figure 1.Each plate is a 10.0 cm X 10.0 cm square. We do not know the charge on the plates. An electron beam isshot in from one edge of the capacitor. It enters the capacitor very close (call it 0 mm) from the top plateand travelling parallel to the plates. The electrons in the beam are moving at 1.50x 107 m/s as they...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT