Question

A 1.25-g sample of a compound is burned in a bomb calorimeter

A 1.25-g sample of a compound is burned in a bomb calorimeter, producing a temperature change from 20.23 °C to 27.65 °C. The heat capacity of the calorimeter is determined to be 5.81 kJ/°C. What is ΔE (aka s ΔU, in kJ/g) for the combustion of this compound? Enter your answer as an integer.

1 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A 1.25-g sample of a compound is burned in a bomb calorimeter
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 1.20-g sample of maleic acid (C4H4O4) is burned in a bomb calorimeter and the temperature...

    A 1.20-g sample of maleic acid (C4H4O4) is burned in a bomb calorimeter and the temperature increases from 24.70 °C to 27.41 °C. The calorimeter contains 1000 g of water and the bomb has a heat capacity of 839 J/°C. The heat capacity of water is 4.184 J g-1°C-1. Based on this experiment, calculate ΔE for the combustion reaction per mole of maleic acid burned.

  • A 0.1785 g sample of magnesium was burned in an oxygen bomb calorimeter. The total heat...

    A 0.1785 g sample of magnesium was burned in an oxygen bomb calorimeter. The total heat capacity of the calorimeter plus water was 5,760 J/C. If the temperature rise of the calorimeter with water was 1.25*C, calculate the enthalpy of combustion(in kJ/mol) of magnesium. Mg(s) + 1/2O2(g) -> MgO(s) Write answer to three significant figures. Numeric Response

  • When a 3.80-g sample of liquid octane (C8H18) is burned in a bomb calorimeter, the temperature...

    When a 3.80-g sample of liquid octane (C8H18) is burned in a bomb calorimeter, the temperature of the calorimeter rises by 26.5 ∘C. The heat capacity of the calorimeter, measured in a separate experiment, is 6.21 kJ/∘C . You may want to reference (Page 265) Section 6.5 while completing this problem. Part A Determine ΔE for octane combustion in units of kJ/mol octane. Express your answer using three significant figures.

  • When a 3.08 g sample of liquid octane (C8H18) is burned in a bomb calorimeter, the...

    When a 3.08 g sample of liquid octane (C8H18) is burned in a bomb calorimeter, the temperature of the calorimeter rises by 26.9 oC. The heat capacity of the calorimeter, measured in a separate experiment, is 6.22 kJ/∘C . The calorimeter also contains 3.00 kg of water, specific heat capacity of 4.18 J/g°C. Determine the heat of combustion of octane in units of kJ/mol octane.

  • A 1.764-g sample of heptanoic acid, C7H14O2 (130.19 g/mol) was burned in a bomb calorimeter with...

    A 1.764-g sample of heptanoic acid, C7H14O2 (130.19 g/mol) was burned in a bomb calorimeter with excess oxygen. The temperature of the calorimeter and the water before combustion was 23.68 °C; after combustion the calorimeter and the water had a temperature of 32.12 °C. The calorimeter had a heat capacity of 500 J/K, and contained 1.462 kg of water. Use these data to calculate the molar heat of combustion (in kJ) of heptanoic acid.

  • Gaseous methane (CH4) will react with gaseous oxygen (O2) to produce gaseous carbon dioxide (CO2 ...

    PART ONE: PART TWO: PART THREE: PART FOUR: Gaseous methane (CH4) will react with gaseous oxygen (O2) to produce gaseous carbon dioxide (CO2 and gaseous water (H20). Suppose 13. g of methane is mixed with 13.8 g of oxygen. Calculate the minimum mass of methane that could be left over by the chemical reaction. Round your answer to 2 significant digits A 1.32-g sample of a compound is burned in a bomb calorimeter, producing a temperature change from 20.85 °C...

  • 7. A 2.548-9 sample of valine, CsH ,NO, (117.15 g/mol) was burned in a bomb calorimeter...

    7. A 2.548-9 sample of valine, CsH ,NO, (117.15 g/mol) was burned in a bomb calorimeter with excess oxygen. The temperature of the calorimeter and the water before combustion was 18.42 °C, after combustion the calorimeter and the water had a temperature of 29.13 °C. The calorimeter had a heat capacity of 633 J/K, and contained 1.255 kg of water. Use these data to calculate the molar heat of combustion (in kJ) of valine.

  • Ignition wires heat sample Thermometer Stirrer A bomb calorimeter, or constant volume calorimeter...

    Ignition wires heat sample Thermometer Stirrer A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. Since the "bomb" itself can absorb energy, a separate experiment is needed to determine the heat capacity of the calorimeter This is known as calibrating the calorimeter In the laboratory a student burns a 0.319-g sample of phenanthrene (C14H10 in a bomb calorimeter containing 1070. g of water....

  • PQ-12. A 1.00 g sample of glucose, C H20. is burned in a bomb calorimeter, the...

    PQ-12. A 1.00 g sample of glucose, C H20. is burned in a bomb calorimeter, the temperature of the calorimeter rises by 9.40 C6H1206(S) °C. What is the heat capacity of the calorimeter2 AH combustion (A) -301 kJ.C (B) -1.67 kJC-1 (C) 1.67 kJCI Table of Data 180.2 g.mol-' -2.83x10 kJ mol-' (D) 301 kJ.°C-!

  • 7. A 2.053-g sample of ethylene glycol, CH.02 (62.07 g/mol) was burned in a bomb calorimeter...

    7. A 2.053-g sample of ethylene glycol, CH.02 (62.07 g/mol) was burned in a bomb calorimeter with excess oxygen. The temperature of the calorimeter and the water before combustion was 16.49 °C; after combustion the calorimeter and the water had a temperature of 23.12 °C. The calorimeter had a heat capacity of 567 J/K, and contained 1.316 kg of water. Use these data to calculate the molar heat of combustion (in kJ) of ethylene glycol.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT