Question

A block of mass m=3 kg at rest is pushed with F= 5t2 N on a...

A block of mass m=3 kg at rest is pushed with F= 5t2 N on a surface with coefficient of friction ?=0.4μ=0.4. The mass is pushed for 10 seconds, until it moves up a frictionless track which makes 30°° with the horizontal. How high does it rise before stopping?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

On level surface: Spy = PN - mg = 0 F FN = mg fk MICFN = Mx Mg ملل y V Fatima EF= mdu & St² Memg = m du & Bar = J (st? - (04

Add a comment
Know the answer?
Add Answer to:
A block of mass m=3 kg at rest is pushed with F= 5t2 N on a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A m= 2.00 kg block is pushed against a spring with negligible mass and force constant k= 300. N/m

    A m= 2.00 kg block is pushed against a spring with negligible mass and force constant k= 300. N/m, compressing it d= 0.250 m. When the block is released, it moves along a frictionless, horizontal surface and then up an incline with slope 37.0° and a coefficient of kinetic friction of 0.320. A)What is the speed of the block as it slides along the horizontal surface after having left the spring?B) How far does the object travel up the incline before...

  • A block of mass 3 kg is pushed against a spring of spring constant 3000 N/m....

    A block of mass 3 kg is pushed against a spring of spring constant 3000 N/m. Initially, the spring is compressed by a distance of 0.220 m, when the block is released from rest and travels along a horizontal frictionless surface before encountering a frictionless ramp, inclined at an angle of 37° above the horizontal. How far along the ramp does the block travel before momentarily coming to rest?

  • A 2.00 kg block is pushed against a spring with negligible mass and force constant k = 400 N/m compressing it 0.220 m.

    A 2.00 kg block is pushed against a spring with negligible mass and force constant k = 400 N/m compressing it 0.220 m. When the block is released, it moves along a frictionless, horizontal surface and then up a frictionless incline with slope 37.0 degree. What is the speed of the block as it slides along the horizontal surface after having left the spring? How far does the block travel up the incline before stops and starts to slide back...

  • A 2.00 kg block is pushed against a spring with negligible mass and force constant k=...

    A 2.00 kg block is pushed against a spring with negligible mass and force constant k= 310 N/m, compressing it 0.220 m. When the block is released, it moves along a horizontal rough surface (with a coefficient of kinetic, μk=  0.125 ) for the distance of d= 2.00 m and then up a frictionless incline. a) What is the speed of the block at the end of the horizontal surface? (I got 1.61) b) How far does the block travel up...

  • A 2.00 kg block is pushed against a spring with negligible mass and force constant k=...

    A 2.00 kg block is pushed against a spring with negligible mass and force constant k= 310 N/m, compressing it 0.220 m. When the block is released, it moves along a horizontal rough surface (with a coefficient of kinetic, μk=  0.125 ) for the distance of d= 2.00 m and then up a frictionless incline. a) What is the speed of the block at the end of the horizontal surface? (I got 1.61) b)How far does the block travel up the...

  • A 2-kg block is pushed against a spring with spring-constant k 512 N/m, compressing it 0.25 m

    A 2-kg block is pushed against a spring with spring-constant k 512 N/m, compressing it 0.25 m. When the block is released, it moves along a frictionless, horizontal surface and then up a frictionless incline with slope 53.1° (a) What is the speed of the block as it slides along the horizontal surface after having left the spring? (b) How far does the block travel up the incline before starting to slide back down?

  • A 4.50 kg block starting from rest is pushed by a force of 38.5 N at...

    A 4.50 kg block starting from rest is pushed by a force of 38.5 N at an angle of 35.0 with the horizontal (see diagram).The coefficient of kinetic friction between the block and the floor is 0.195. It starts from rest and begins to accelerate. a. Draw a free-body diagram for this situation. b. What is the acceleration of the block? c. How far does it go in the first four seconds of this acceleration? 35

  • . A 2.00kg block is moved from point A (at rest) a distance of 2.00 m...

    . A 2.00kg block is moved from point A (at rest) a distance of 2.00 m to point B under the action of a variable force F(x) 10x + 6x2. Once in point B it is moving down 1.00 m through an 60.00 inclined frictionless surface until hit a spring (point C) as shown in figure. (The coefficient of kinetic friction between the block and the surface between A and B is 0.3 and the spring constant equal to 400...

  • Questions 1&2 FP 1. A sliding block of mass m 0.25 kg is subject to a...

    Questions 1&2 FP 1. A sliding block of mass m 0.25 kg is subject to a force of magnitude 4 N that makes an angle of ф-30 with the horizontal surface. If the coefficient of kinetic friction between block and surface is 0.5, what is the resulting acceleration of the block along the surface Figure 1: Block on incline. 2. A block of mass m - 5 kg is subject to a force of magnitude 20 N that makes an...

  • A block of mass M-3.0 kg is pushed up a frictionless 30° incline by an applied...

    A block of mass M-3.0 kg is pushed up a frictionless 30° incline by an applied force F-25 N as shown in the diagram. a. What is the magnitude of the resulting acceleration of the block? b. If the block starts form rest what is its speed after 5 seconds? 3. F 25 N 300 30°

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT