Question

[Review Topics) [References) Use the References to access important values if needed for this question. According to the idea
[Review Topics) (References) Use the References to access important values if needed for this question. According to the idea
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given that n=9.361mal Voleme lu= 0.80051 Temp. (T)= 479.9K Pressure (P)- 477-8 along a = 1345 ² ahm/mol b = 3.214 X10 2 /mal

@solm Alidhal gas a = 2.253 L² abn ba 4.278 x 10-22 1. Pideed - 13+08 ahm mot? male (n)=160urmal volume (u) = 107822 Temp. (T

Add a comment
Know the answer?
Add Answer to:
[Review Topics) [References) Use the References to access important values if needed for this question. According...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Use the References to access important values if needed for this question. According to the ideal...

    Use the References to access important values if needed for this question. According to the ideal gas law, a 0.9428 mol sample of xenon gas in a 1.859 L container at 272.4 K should exert a pressure of 11.34 atm. What is the percent difference between the pressure calculated using the van der Waals' equation and the ideal pressure? For Xe gas, a= 4.194 L’atm/mol2 and b = 5.105x10-2 L/mol. Percent difference = 14 Pideal – Pvan der Waals x...

  • Use the References to access important values if needed for this question. According to the ideal...

    Use the References to access important values if needed for this question. According to the ideal gas law, a 9.845 mol sample of xenon gas in a 0.8342 L container at 500.6 K should exert a pressure of 484.8 atm. What is the percent difference between the pressure calculated using the van der Waals' equation and the ideal pressure? For Xe gas, a -4.194 L'atm/mol and b- 5.105x10-2 L/mol. Pideal - Puan der Waale Percent difference = ! x 100...

  • According to the ideal gas law, a 10.65 mol sample of krypton gas in a 0.8201...

    According to the ideal gas law, a 10.65 mol sample of krypton gas in a 0.8201 L container at 496.1 K should exert a pressure of 528.7 atm. What is the percent difference between the pressure calculated using the van der Waals' equation and the ideal pressure? For Kr gas, a 2.318 LPatm/mol? and b 3.978x102 L/mol. Pideal-Poan der Woals Percent difference x 100 Pnal+Pn der Waals 2 %

  • According to the ideal gas law, a 0.9832 mol sample of carbon dioxide gas in a...

    According to the ideal gas law, a 0.9832 mol sample of carbon dioxide gas in a 1.975 L container at 271.4 K should exert a pressure of 11.09 atm. By what percent does the pressure calculated using the van der Waals' equation differ from the ideal pressure? For CO2 gas, a = 3.592 L'atm/mol and b=4.267x102 L/mol. Hint: % difference = 100*(P ideal - Pvan der Waals)/P ideal

  • According to the ideal gas law, a 0.9935 mol sample of krypton gas in a 1.258...

    According to the ideal gas law, a 0.9935 mol sample of krypton gas in a 1.258 L container at 265.4 K should exert a pressure of 17.20 atm. By what percent does the pressure calculated using the van der Waals' equation differ from the ideal pressure? For Kr gas, a - 2.318 L'atm/mol- and b= 3.978*10-2 L/mol. Hint: % difference = 100*(P ideal - Pvan der Waals) /P ideal

  • According to the ideal gas law, a 1.003 mol sample of carbon dioxide gas in a...

    According to the ideal gas law, a 1.003 mol sample of carbon dioxide gas in a 1.561 L container at 270.6 K should exert a pressure of 14.27 atm. What is the percent difference between the pressure calculated using the van der Waals' equation and the ideal pressure? For CO2 gas, a = 3.592 L'atm/mol2 and b = 4.267x10-2 L/mol.

  • Nindow Help * 3 Why Pax 75% + Tap X & Search X E Evaluati x...

    Nindow Help * 3 Why Pax 75% + Tap X & Search X E Evaluati x W parents x . What C x /index.html?deploymentid=55750823468596024213874980&ISBN 9781... ☆ Q Search this course X References Use the References to access important values if needed for this question. According to the ideal gas law, a 1.026 mol sample of nitrogen gas in a 1.693 L container at 273.9 K should exert a pressure of 13.62 atm. What is the percent difference between the pressure...

  • According to the ideal gas law, a 0.9530 mol sample of methane gas in a 1.223...

    According to the ideal gas law, a 0.9530 mol sample of methane gas in a 1.223 L container at 267.0 K should exert a pressure of 17.07 atm. By what percent does the pressure calculated using the van der Waals' equation differ from the ideal pressure? For CH4 gas, a = 2.253 L2atm/mol2 and b = 4.278×10-2 L/mol. ___ %

  • According to the ideal gas law, a 9.843 mol sample of argon gas in a 0.8425 L container at 502.0 K should exert a pressure of 481.3 atm

    Hint: % difference = 100×(P ideal - Pvan der Waals) / P idealAccording to the ideal gas law, a 9.843 mol sample of argon gas in a 0.8425 L container at 502.0 K should exert a pressure of 481.3 atm. By what percent does the pressure calculated using the van der Waals' equation differ from the ideal pressure? For Ar gas, a =1.345L2 atm/mol2 and b = 3.219×10-2 L/mol.

  • According to the ideal gas law, a 1.066 mol sample of krypton gas in a 1.927...

    According to the ideal gas law, a 1.066 mol sample of krypton gas in a 1.927 L container at 272.4 K should exert a pressure of 12.37 atm. By what percent does the pressure calculated using the van der Waals' equation differ from the ideal pressure? For Kr gas, a = 2.318 L2atm/mol2 and b = 3.978×10-2 L/mol. ___% Hint: % difference = 100×(P ideal - Pvan der Waals) / P ideal

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT