Question

According to the ideal gas law, a 0.9935 mol sample of krypton gas in a 1.258 L container at 265.4 K should exert a pressure
0 0
Add a comment Improve this question Transcribed image text
Answer #1

- - an² سه ماه قه لا ART (v-nb) ا = 2.318 .39352 9935x0.0821 x 265.4 (1. 258 - 9935x3.978x102) 1.2582 = 16.319 atm % differen

Add a comment
Know the answer?
Add Answer to:
According to the ideal gas law, a 0.9935 mol sample of krypton gas in a 1.258...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • According to the ideal gas law, a 1.066 mol sample of krypton gas in a 1.927...

    According to the ideal gas law, a 1.066 mol sample of krypton gas in a 1.927 L container at 272.4 K should exert a pressure of 12.37 atm. By what percent does the pressure calculated using the van der Waals' equation differ from the ideal pressure? For Kr gas, a = 2.318 L2atm/mol2 and b = 3.978×10-2 L/mol. ___% Hint: % difference = 100×(P ideal - Pvan der Waals) / P ideal

  • According to the ideal gas law, a 10.74 mol sample of krypton gas in a 0.8444...

    According to the ideal gas law, a 10.74 mol sample of krypton gas in a 0.8444 L container at 498.7 K should exert a pressure of 520.5 atm. What is the percent difference between the pressure calculated using the van der Waals' equation and the ideal pressure? For Kr gas, a = 2.318 L2atm/mol2 and b = 3.978×10-2 L/mol. ____%

  • (chp.13) According to the ideal gas law, a 1.010 mol sample of krypton gas in a...

    (chp.13) According to the ideal gas law, a 1.010 mol sample of krypton gas in a 1.123 L container at 269.7 K should exert a pressure of 19.90 atm. What is the percent difference between the pressure calculated using the van der Waals' equation and the ideal pressure? For Kr gas, a = 2.318 L2atm/mol2 and b = 3.978×10-2 L/mol. %

  • According to the ideal gas law, a 0.9054 mol sample of krypton gas in a 1.023...

    According to the ideal gas law, a 0.9054 mol sample of krypton gas in a 1.023 L container at 274.0 K should exert a pressure of 19.90 atm. What is the percent difference between the pressure calculated using the van der Waals' equation and the ideal pressure? For Kr gas, a = 2.318 L2atm/mol2 and b = 3.978×10-2 L/mol. % According to the ideal gas law, a 9.344 mol sample of oxygen gas in a 0.8267 L container at 500.1...

  • According to the ideal gas law, a 10.65 mol sample of krypton gas in a 0.8201...

    According to the ideal gas law, a 10.65 mol sample of krypton gas in a 0.8201 L container at 496.1 K should exert a pressure of 528.7 atm. What is the percent difference between the pressure calculated using the van der Waals' equation and the ideal pressure? For Kr gas, a 2.318 LPatm/mol? and b 3.978x102 L/mol. Pideal-Poan der Woals Percent difference x 100 Pnal+Pn der Waals 2 %

  • According to the ideal gas law, a 0.9832 mol sample of carbon dioxide gas in a...

    According to the ideal gas law, a 0.9832 mol sample of carbon dioxide gas in a 1.975 L container at 271.4 K should exert a pressure of 11.09 atm. By what percent does the pressure calculated using the van der Waals' equation differ from the ideal pressure? For CO2 gas, a = 3.592 L'atm/mol and b=4.267x102 L/mol. Hint: % difference = 100*(P ideal - Pvan der Waals)/P ideal

  • A 9.450 mol sample of krypton gas is maintained in a 0.8100 L container at 300.1...

    A 9.450 mol sample of krypton gas is maintained in a 0.8100 L container at 300.1 K. What is the pressure in atm calculated using the van der Waals' equation for Kr gas under these conditions? For Kr, a = 2.318 L2atm/mol2 and b = 3.978×10-2 L/mol. atm

  • 1: according to the ideal gas law, a 1.016 mol sample of Krypton gas is in...

    1: according to the ideal gas law, a 1.016 mol sample of Krypton gas is in a 1.875 liter container at 273.8 Kelvin should exert a pressure of 12.17 atmospheres by what percent does the pressure calculated using the boundary waals equation differ from the ideal pressure? for Kr gas, a=2.318 L^2 ATM/mol^2 and b=3.978x10^-2 2: the average molecular speed in a sample of O3 gas at a certain temperature is 399 m/s. the average molecular speed in a sample...

  • A 10.13 mol sample of krypton gas is maintained in a 0.7517 L container at 297.2...

    A 10.13 mol sample of krypton gas is maintained in a 0.7517 L container at 297.2 K. What is the pressure in atm calculated using the van der Waals' equation for Kr gas under these conditions? For Kr, a = 2.318 L2atm/mol2 and b = 3.978×10-2 L/mol.

  • According to the ideal gas law, a 9.843 mol sample of argon gas in a 0.8425 L container at 502.0 K should exert a pressure of 481.3 atm

    Hint: % difference = 100×(P ideal - Pvan der Waals) / P idealAccording to the ideal gas law, a 9.843 mol sample of argon gas in a 0.8425 L container at 502.0 K should exert a pressure of 481.3 atm. By what percent does the pressure calculated using the van der Waals' equation differ from the ideal pressure? For Ar gas, a =1.345L2 atm/mol2 and b = 3.219×10-2 L/mol.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT