Question

Please show all work with algebra.7 6. A particle with a mass of 0.500 kg is attached to a horizontal spring with a force 1.00 m and has a speed of constant of 50.0 N/m. Att the particle is at 10V3 m/s to the right. (a) (8 points) Find the amplitude and the initial phase of the oscillation. (b) (7 points) What is is the period of the oscillation? Find the length of a simple pendulum with the same period. c) (7 points) What is the particles position as a function of time? (d) (7 points) Where is the potential energy three times the kinetic energy? e) (7 points) What is the particle speed when its kinetic energy is three times the potential energy?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Please show all work with algebra. 7 6. A particle with a mass of 0.500 kg...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A particle with mass 1.39 kg oscillates horizontally at the end of a horizontal spring. A...

    A particle with mass 1.39 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.959 m and a duration of 127 s for 79 cycles of oscillation. Find the frequency, f the speed at the equilibrium position, Vmax, the spring constant, k, the potential energy at an endpoint, Umax, the potential energy when the particle is located 54.1% of the amplitude away from the equilibrium position, U, and the kinetic energy, K, and...

  • A particle with mass 2.73 kg oscillates horizontally at the end of a horizontal spring. A...

    A particle with mass 2.73 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.869 m and a duration of 131 s for 69 cycles of oscillation. Find the frequency, f, the speed at the equilibrium position, Vmax, the spring constant, k, the potential energy at an endpoint, Umax, the potential energy when the particle is located 37.3% of the amplitude away from the equilibrium position, U, and the kinetic energy, K, and...

  • A particle with mass 1.09 kg oscillates horizontally at the end of a horizontal spring. A...

    A particle with mass 1.09 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.891 m and a duration of 131 s for 68 cycles of oscillation. Find the frequency, f, the speed at the equilibrium position, vmax, the spring constant, k, the potential energy at an endpoint, Umax, the potential energy when the particle is located 50.3% of the amplitude away from the equiliibrium position, U, and the kinetic energy, K, and...

  • A particle with mass 1.59 kg oscillates horizontally at the end of a horizontal spring. A...

    A particle with mass 1.59 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.901 m and a duration of 125 s for 68 cycles of oscillation. Find the frequency, f, the speed at the equilibrium position, vmax, the spring constant, k, the potential energy at an endpoint, Umax, the potential energy when the particle is located 50.3% of the amplitude away from the equiliibrium position, U, and the kinetic energy, K, and...

  • A particle with mass 2.15 kg oscillates horizontally at the end of a horizontal spring. A...

    A particle with mass 2.15 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.909 m and a duration of 121 s for 76 cycles of oscillation. Find the frequency, f, the speed at the equilibrium position, Vmax, the spring constant, k, the potential energy at an endpoint, Umax, the potential energy when the particle is located 51.9% of the amplitude away from the equiliibrium position, U, and the kinetic energy, K, and...

  • A particle with mass 2.19 kg oscillates horizontally at the end of a horizontal spring. A...

    A particle with mass 2.19 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.841 m and a duration of 125 s for 78 cycles of oscillation. Find the frequency, f, the speed at the equilibrium position, Vmax, the spring constant, k, the potential energy at an endpoint, Umax, the potential energy when the particle is located 41.9% of the amplitude away from the equiliibrium position, U, and the kinetic energy, K, and...

  • A particle with mass 2.47 kg oscillates horizontally at the end of a horizontal spring. A...

    A particle with mass 2.47 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.913 m and a duration of 121 s for 71 cycles of oscillation. Find the frequency, the speed at the equilibrium position, vimax the spring constant, k, the potential energy at an endpoint, U the potential energy when the particle is located 41.7% of the amplitude away from the equilibrium position, U, and the kinetic energy, K, and the...

  • A particle with mass oscillates horizontally at the end of a horizontal spring. A student measures...

    A particle with mass oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of and a duration of for cycles of oscillation. Find the frequency, the speed at the equilibrium position, the spring constant, the potential energy at an endpoint, the potential energy when the particle is located of the amplitude away from the equiliibrium position, and the kinetic energy, and the speed, at the same position. find: F= vmax= k= U max= U= K=...

  • Please do all questions and show work. 1. (2 points) A 200 g mass attached to...

    Please do all questions and show work. 1. (2 points) A 200 g mass attached to a light spring oscillates on a frictionless, horizontal table. The mass is pulled 8 cm and released. A student finds that 12 oscillations takes 18 seconds. (a) What is the spring constant? (b) What is the maximum speed of the mass? 2. (3 points) The position of an object connected to a spring varies with time according to the expression x = (7.5 cm)cos...

  • please give me answers to all the questions and i would really appreciate that thank you...

    please give me answers to all the questions and i would really appreciate that thank you 6. -0 points My Notes O Ask Your Teache A 10.1 kg object oscillates at the end of a vertical spring that has a spring constant of 2.20 x 104 N/m. The effect of air resistance is represented by the damping coefficient b = 3.00 N-s/m (a) Calculate the frequency of the dampened oscillation. H2 (b) By what percentage does the amplitude of the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT