Question

4. An ice skater with rotational inertia I = 0.23 kg*m* is spinning with angular speed w. They pull their arms in, increasing
0 0
Add a comment Improve this question Transcribed image text
Answer #1

from Conservation of angular momentum Initial angular momumentum = final angular momentum Li = Lf 7 Ii Wi = If Wf = 0.23 kg*m

Add a comment
Know the answer?
Add Answer to:
4. An ice skater with rotational inertia I = 0.23 kg*m* is spinning with angular speed...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • If an ice skater has a rotational inertia of 100 kg*m^(2)while spinning with an angular velocity...

    If an ice skater has a rotational inertia of 100 kg*m^(2)while spinning with an angular velocity of 2 rad/s, what is the ice skaters angular velocity if she changes her rotational inertia to 50 kg*m^(2)?

  • An ice- skater is initially spinning at an angular speed ω = 1.35 revolutions/s with a rotational inertia Ii = 2.30 kg.m...

    An ice- skater is initially spinning at an angular speed ω = 1.35 revolutions/s with a rotational inertia Ii = 2.30 kg.m2 with her arms extended. When she pulls her arms in, her rotational inertia is reduced to If=1.05 kg.m2 . Assume no external torques act. a) Determine her initial angular speed in rad/s. (1 marks) b) Calculate her final angular speed in RPM (4 marks) c) Calculate the period of rotation when she is at her final speed (1...

  • Calculate the angular momentum, in kg · m2/s, of an ice skater spinning at 6.00 rev/s...

    Calculate the angular momentum, in kg · m2/s, of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.330 kg · m2. (a) Calculate the angular momentum, in kg . m/s, of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.330 kg . m2. kg. m/s (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his...

  • (a) Calculate the angular momentum (in kg-m/s) of an ice skater spinning at 6.00 rav/s given...

    (a) Calculate the angular momentum (in kg-m/s) of an ice skater spinning at 6.00 rav/s given his moment of inertia is 0.470 kg m? kg-m/s (b) He reduces his rate of spin (his angular velocity) by extending wis arms and increasing his moment of inertia Find the value of his moment of inertia (in kg) ir his angular velocity drops to 2.05 rev/s. kgim² (c) Suppose instead he keeps his arms in and allows friction with the ice to slow...

  • An ice skater with moment of inertia 70.0 kg•m2 is spinning at 41.0 rpm. If the...

    An ice skater with moment of inertia 70.0 kg•m2 is spinning at 41.0 rpm. If the skater pulls in her arms, her moment of inertia decreases to 50.0 kg•m2. What is the skater’s resulting angular velocity?

  • (a) Calculate the angular momentum (in kg•m?/s) of an Ice skater spinning at 6.00 rev/s given...

    (a) Calculate the angular momentum (in kg•m?/s) of an Ice skater spinning at 6.00 rev/s given his moment of inertila is 0.350 kg-m?. kg-m/s (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kg-m? if his angular velocity drops to 2.05 rev/s. kom? (c) Suppose instead he keeps his arms in and allows friction with the ice to slow him...

  • An ice- skater is initially spinning at an angular speed ω = 1.35 revolutions/s with a...

    An ice- skater is initially spinning at an angular speed ω = 1.35 revolutions/s with a rotational inertia Ii = 2.30 kg.m2 with her arms extended. When she pulls her arms in, her rotational inertia is reduced to If=1.05 kg.m2 . Assume no external torques act. a) Determine her initial angular speed in rad/s. (1 marks) b) Calculate her final angular speed in RPM (4 marks) c) Calculate the period of rotation when she is at her final speed (1...

  • An ice skater is spinning at 6.8 rev/s and has a moment of inertia of 0.24...

    An ice skater is spinning at 6.8 rev/s and has a moment of inertia of 0.24 kg ⋅ m2. Calculate the angular momentum, in kilogram meters squared per second, of the ice skater spinning at 6.8 rev/s. He reduces his rate of rotation by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kilogram meters squared) if his rate of rotation decreases to 1.25 rev/s. Suppose instead he keeps his arms...

  • (a) Calculate the angular momentum (in kg.m"/s) of an ice skater spinning at 6.00 rev/s given...

    (a) Calculate the angular momentum (in kg.m"/s) of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.470 kg-m kg-m /s (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kg-m2) if his angular velocity drops to 1.35 rev/s. (c) Suppose instead he keeps his arms in and allows friction with the ice to slow him...

  • (a) Calculate the angular momentum (in kg.m2/s) of an ice skater spinning at 6.00 rev/s given...

    (a) Calculate the angular momentum (in kg.m2/s) of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.470 kg.m2 kg-m2/s (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kg m-) if his angular velocity drops to 1.00 rev/s. kg-m2 (c) suppose instead he keeps his arms in and allows friction with the ice to slow...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT