Question

In the situation shown the lens has a focal length -10 cm and the mirror has curvature radius +20 cm. The distance between ad

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a) For minor → fa = 200m = 10 cm → f= +10 cm do = +15cm a = jó di =+30 cm (in front of minor) Distance between mirror & lens

Add a comment
Know the answer?
Add Answer to:
In the situation shown the lens has a focal length -10 cm and the mirror has...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A lens and a concave mirror are separated at 20.0 cm as shown in Figure . The lens and the mirror have focal length...

    A lens and a concave mirror are separated at 20.0 cm as shown in Figure . The lens and the mirror have focal lengths of 2.0 cm and 6.0 cm, respectively. Assume that an object is placed upright to the left of the lens. The image formed due to light passing through the lens twice is located at 6.0 cm to the right of the lens. (i) Determine the position of the object with respect to the lens. (ii) Describe...

  • The object in the figure beside is mid-way between the lens and the mirror, which are...

    The object in the figure beside is mid-way between the lens and the mirror, which are separated by a distance d-25.0 cm. The magnitude of the mirror's radius of curvature is 20.0 cm, and the lens has a focal length of-16.7 cm. Lens Object Mirronr (A) We first study the image formed by the lens only (As the spherical (a) Describe the image formed by the lens (location, magnification, real or virtual and (b) Construct a ray diagram of this...

  • Consider a spherical mirror and lens separated by 45 cm. The mirror is on the left...

    Consider a spherical mirror and lens separated by 45 cm. The mirror is on the left with a focal length of 100 cm. The lens is on the right with a focal length of −20 cm. A 5 cm tall object is placed 20 cm to the left of the lens. a) If you only consider the rays that move to the right from the object, fully characterize the final image in the system. In other words provide final image...

  • An object is placed 7.5 cm in front of a converging lens with a focal length...

    An object is placed 7.5 cm in front of a converging lens with a focal length f1 = 2.5 cm. On the other side of the lens is a concave mirror of focal length f2 = 1.5 cm. The mirror is 5.0 cm from the lens. Light from the object passes rightward through the lens, reflects from the mirror, passes leftward through the lens, and forms a final image of the object. ksid tet to What is the distance between...

  • A converging lens has a focal length of 7.5 cm. An object is placed 5 cm...

    A converging lens has a focal length of 7.5 cm. An object is placed 5 cm from the lens. a. Draw the rays tracing diagram to locate the image. Is the image real or virtual? b. Calculate the location and the magnification for this image.

  • An object is placed in front of a concave mirror with a focal length of 5...

    An object is placed in front of a concave mirror with a focal length of 5 cm . The image formed is at a distance of 7.5 cm behind the mirror. The magnification factor m= An object is placed in front of a concave mirror with a focal length of 10 cm . The image formed is at a distance of 20 cm on the same side of the mirror. The magnification factor m= An object is placed in front...

  • An object is 22.0 cm to the left of a lens that has a focal length...

    An object is 22.0 cm to the left of a lens that has a focal length of +8.50 cm. A second lens, which has a focal length of -29.0 cm, is 5.80 cm to the right of the first lens. (a) Find the distance between the object and the final image formed by the second lens. (b) What is the overall magnification? Please help with parts A and B. Thanks! An object is 22.0 cm to the left of a...

  • Part A: A diverging lens has of focal length of 15.0 cm. An object is placed...

    Part A: A diverging lens has of focal length of 15.0 cm. An object is placed 21 cm to the left of the lens. a) draw a ray diagram showing the situation. b) find the location of the image produced by the lens (mind the signs). Part B: A converging lens is located 30 cm to the right of the previously mentioned diverging lens (part A). As a result, the image you found in part (a) is now instead located...

  • A10 and All. A CONCAVE spherical mirror has a focal length of 20 cm. An object...

    A10 and All. A CONCAVE spherical mirror has a focal length of 20 cm. An object is placed 60 cm from the pole P of the mirror as shown in the diagram. R is the center of curvature. All. (i) Is the image magnified or diminished? Explain and justify your answer. (ii) Confirm your answers to the above part questions in A10 and All above, by sketching the paths of TWO Rays on the diagram to show how and where...

  • A diverging lens has a focal length of magnitude 22.6 cm. (a) Locate the images for...

    A diverging lens has a focal length of magnitude 22.6 cm. (a) Locate the images for each of the following object distances. 45.2 cm distance cm location (behind or in front of lens) 22.6 cm distance cm location (behind or in front of lens) 11.3 cm distance cm location (behind or in front of lens) (b) Is the image for the object at distance 45.2 real or virtual? Is the image for the object at distance 22.6 real or virtual?...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT