Question
Show all steps clearly
12 in 5.35. Water issues through a horizontal 180° pipe bend as shown in Figure P5.35. The pipe has the same diameter, 12 in, before and after the bend and the velocity through the bend is 10 ft/s. The pressures at the entrance and exist of the bend are 12 psi and 10 psi, respectively. Calculate the horizontal (x and y) components of the force exerted by the bend on the flowing water. Figure P5.35 Water issing through a pipe bed
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Show all steps clearly 12 in 5.35. Water issues through a horizontal 180° pipe bend as...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Part 1 Correct. Water flows through a horizontal, pipe bend as is illustrated in the figure...

    Part 1 Correct. Water flows through a horizontal, pipe bend as is illustrated in the figure below. The flow cross section area is constant at a value of 9000 mm2. The flow velocity everywhere in the bend is 15 m/s. The pressures at the entrance and exit of the bend are 210 and 149 kPa, respectively. Calculate the horizontal (x and y) components of the anchoring force needed to hold the bend in place (a) What is the density of...

  • Water flows through a 30° pipe bend at a rate of 200 gpm. The diameter of...

    Water flows through a 30° pipe bend at a rate of 200 gpm. The diameter of the entrance to the bend is 2.5 in. and that of the exit is 3 in. The pressure in the pipe is 30 psig, and the pressure drop in the bend is negligible. What is the total force (magnitude and direction) exerted by the fluid on the pipe bend?

  • 3. Water flows along a circular pipe and is turned vertically through 180° by a reducing...

    3. Water flows along a circular pipe and is turned vertically through 180° by a reducing bend as shown in figure 2. The rate of flow in the pipe is 20 litres/s, the pressure measured at the entrance to the bend is 120 kN/m3 and the volume of fluid in the bend is 0.1m3. What is the magnitude and direction of the force exerted by the fluid on the bend? Ignore any friction losses. (10 marks) 100mm P - 120kN/m2...

  • Water flow a rate of 0.5 m3 /s rising through a 50 o contracting pipe bend....

    Water flow a rate of 0.5 m3 /s rising through a 50 o contracting pipe bend. The diameter at the bend entrance is 700 mm and at the exit 500 mm as shown in Figure 1. If the pressure at the entrance to the bend is 200 kN/m2 , determine the magnitude and direction of the force exerted by the fluid on the bend. The exit entrance of the bend is 0.4 m higher than the entrance and the bend...

  • Water flows through the pipe bend shown in Fig Q1d, which lies in the horizontal plane....

    Water flows through the pipe bend shown in Fig Q1d, which lies in the horizontal plane. If the volume flow-rate is 1.0 L/s and the pipe diameter is 30 mm, calculate the mean velocity in the pipe and the force that the water imposes on the pipe if the inlet pressures is 1.1 bar and the outlet pressure is 1.0 bar. (d) 181 Fig. Q1d

  • (a) A horizontal pipe, of constant internal diameter 500 mm, has a 90° bend (Figure Q3a)....

    (a) A horizontal pipe, of constant internal diameter 500 mm, has a 90° bend (Figure Q3a). The discharge of water through the pipe is 0.15 ms and the entry pressure head is 28 m. Determine the magnitude and direction of the force exerted by the fluid on the bend. [9 marks] Figure Q3a

  • (15 points) Water at 20 °C flows through a 180° pipe bend. Pressures and diameters of...

    (15 points) Water at 20 °C flows through a 180° pipe bend. Pressures and diameters of the pipe at point 1 and two are given as P,-350 kPa, D1-30 cm, P., 120 kPa, and D2 . 8 cm. Neglecting the pipe and water weight, answer the following questions. Patm is 100 kPa, and the total reaction force in the x direction, F., is measured as-20 kN. 4. P-100 kP a. What are gage pressures at point 1 and 2 b....

  • Water flows through the pipe bend and nozzle arrangement shown in the figure above, which lies...

    Water flows through the pipe bend and nozzle arrangement shown in the figure above, which lies with its axis in the horizontal -y plane. The water issues from the nozzle into the atmosphere as a jet with a velocity VN - 13 m/s and the pressure at Ais PA - 179 kPa Find the moment of the resultant force about a vertical axis through the point X for D = 6 cm diameter, Ly - 30 cm 19 cm and...

  • also need direction of resultant force FIGURE P6-37 6-38 Water flowing in a horizontal 25-cm-diameter pipe...

    also need direction of resultant force FIGURE P6-37 6-38 Water flowing in a horizontal 25-cm-diameter pipe at 8 m/s and 300 kPa gage enters a 90 bend reducing section, which connects to a 15-cm-diameter vertical pipe. The inlet of the bend is 50 cm above the exit. Neglecting any frictional and gravitational effects, determine the net resultant force exerted on the reducer by the water. Take the momentum- flux correction factor to be 1.04. 6 30 A horizontal 4-cm-diameter water...

  • Water is flowing through a horizontal pipe with diameter, D1, at a velocity, V1, and under a pres...

    Water is flowing through a horizontal pipe with diameter, D1, at a velocity, V1, and under a pressure, P1. It enters a 900 reducing bend (Shown in grey in Fig 2) that connects to a vertical pipe of diameter, D2. The inlet of the bend is 50 cm above the exit of the bend (as shown in Fig 2). Axes for positive directions of x and z coordinates are provided. Figure 2 Side view of reducing bend from horizontal to...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT