Question

Suppose a 500 ml flask is hilled with 0.30 mol of CO, 0.20 mol of H. and 1.1 mol of CO,. The following rection becomes possib

0 0
Add a comment Improve this question Transcribed image text
Answer #1

concentration (M1 = moles Volumell) volume of flask = 500 mL = 0.5L ( 1000 mL FILL initial concentration of co= 0.30 mol = 0.

Add a comment
Know the answer?
Add Answer to:
Suppose a 500 ml flask is hilled with 0.30 mol of CO, 0.20 mol of H....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Suppose a 500 ml flask is filled with 0.50 mol of CO, 1.7 mol of H,0...

    Suppose a 500 ml flask is filled with 0.50 mol of CO, 1.7 mol of H,0 and 1.1 mol of H. The following reaction becomes possible: CO(g) +H,0(8) -CO2() +H,() The equilibrium constant K for this reaction is 0.244 at the temperature of the flask. Calculate the equilibrium molarity of 1,0. Round your answer to two decimal places.

  • Suppose a 500. mL flask is filled with 0.20 mol of NO2, 1.7 mol of NO...

    Suppose a 500. mL flask is filled with 0.20 mol of NO2, 1.7 mol of NO and 0.80 mol of CO2. The following reaction becomes possible: NO2(g) +CO(g) = NO(g) + CO2(g) The equilibrium constant K for this reaction is 0.457 at the temperature of the flask. Calculate the equilibrium molarity of NO. Round your answer to two decimal places. MM x 6 ?

  • Suppose a 500. mL flask is filled with 1.5 mol of CO, 1.8 mol of H,O...

    Suppose a 500. mL flask is filled with 1.5 mol of CO, 1.8 mol of H,O and 0.60 mol of CO,. The following reaction becomes possible: CO(g) +H2O(g) + CO2(g)+H2(g) The equilibrium constant K for this reaction is 3.75 at the temperature of the flask. Calculate the equilibrium molarity of 1,0. Round your answer to two decimal places. IM | xs ?

  • Suppose a 500. mL flask is filled with 0.40 mol of CO, 0.60 mol of NO...

    Suppose a 500. mL flask is filled with 0.40 mol of CO, 0.60 mol of NO and 0.70 mol of CO2. The following reaction becomes possible: NO2(g) +CONO( CO2() The equilibrium constant K for this reaction is 9.06 at the temperature of the flask. Calculate the equilibrium molarity of CO. Round your answer to two decimal places. Џи

  • Suppose a 500. ml flask is filled with 0.90 mol of NO,, 0.10 mol of CO...

    Suppose a 500. ml flask is filled with 0.90 mol of NO,, 0.10 mol of CO and 0.50 mol of NO. The following reaction becomes possible: NO2(g) +CO(g) = NO(g) + CO2(g) The equilibrium constant K for this reaction is 0.172 at the temperature of the flask. Calculate the equilibrium molarity of CO. Round your answer to two decimal places. IM xs ?

  • Suppose a 500. mL flask is filled with 1.5 mol of CO, 1.2 mol of NO...

    Suppose a 500. mL flask is filled with 1.5 mol of CO, 1.2 mol of NO and 1.0 mol of CO,. The following reaction becomes possible: NO2(g) +CO(g) = NO(g) + CO2(g) The equilibrium constant K for this reaction is 6.78 at the temperature of the flask. Calculate the equilibrium molarity of NO2. Round your answer to two decimal places. Пм x 6 ?

  • Suppose a 250. mL flask is filled with 1.1 mol of H₂ O, 1.5 mol of CO₂ and 0.80 mol of H₂

    Suppose a 250. mL flask is filled with 1.1 mol of H₂ O, 1.5 mol of CO₂ and 0.80 mol of H₂. The following reaction becomes possibleCO(g)+H₂ O(g) ⇌ CO₂(g)+H₂(g)The equilibrium constant K for this reaction is 7.29 at the temperature of the flask.Calculate the equilibrium molarity of CO₂. Round your answer to two decimal places.

  • Suppose a 250. ml flask is filled with 0.10 mol of H and 0.30 mol of...

    Suppose a 250. ml flask is filled with 0.10 mol of H and 0.30 mol of I. The following reaction becomes possible: H2(g) +12(g) - 2HI(g) The equilibrium constant K for this reaction is 5.61 at the temperature of the flask. Calculate the equilibrium molarity of H. Round your answer to two decimal places. OM x ?

  • Suppose a 500. mL flask is filled with 0.70 mol of NO2, 2.0 mol of NO...

    Suppose a 500. mL flask is filled with 0.70 mol of NO2, 2.0 mol of NO and 0.90 mol of CO2. The following reaction becomes possible: NO2(e)+Co(g)NO(g)+Co,(g) The equilibrium constant K for this reaction is 0.331 at the temperature of the flask. Calculate the equilibrium molarity of CO. Round your answer to two decimal places.

  • Suppose a 250. ml flask is filled with 1.7 mol of H, and 0.30 mol of...

    Suppose a 250. ml flask is filled with 1.7 mol of H, and 0.30 mol of Cly. The following reaction becomes possible: H2(g) + Cl2(g) - 2HCI(g) The equilibrium constant K for this reaction is 6.15 at the temperature of the flask. Calculate the equilibrium molarity of Cl2. Round your answer to two decimal places. OM xo?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT