Question

Problem 1: A block (m 7.0kg) is released from point A and it slides down the incline (0-40°) where the coefficient of kinetic
0 0
Add a comment Improve this question Transcribed image text
Answer #1

cal frict= ull- ung caso om using work energy theorem - umgcono x5 = 0+1 kr2 + o-mg (540 30-40 79 sind (5+²) - ung colors= 1

Add a comment
Know the answer?
Add Answer to:
Problem 1: A block (m 7.0kg) is released from point A and it slides down the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 1: block (m-7.0kg) is released from point A and it slides down the incline (...

    Problem 1: block (m-7.0kg) is released from point A and it slides down the incline ( 0-40°) where the coefficient of kinetic friction is 0.25. It goes 5.0 m and hits a spring with a spring constant k=500 N/m. During the compression and the reaction of the spring, we assume that the bloc is moving on a frictionless surface (i = 0). a. How far is the spring compressed? b. What would be the velocity of the bloc when it...

  • A solid block of mass 60.0 kg starts from rest and slides down a rough surface...

    A solid block of mass 60.0 kg starts from rest and slides down a rough surface with a length of 10.0 m where the coefficient of friction is uk=0.20. The surface is inclined at 40.0°. After sliding 10 meters down the incline it hits a spring with a spring constant of ks = 550.0 N/m. Draw a freebody Diagram indicating all forces. Write out and solve the force and energy equations. How high is the block above the spring at...

  • A block of mass m = 850 g is released from rest and slides down a...

    A block of mass m = 850 g is released from rest and slides down a frictionless track of height 32.7 cm. At the bottom of the track, the block slides freely along a horizontal plane until it hits a spring with a constant of k = 50 N/m. What is the maximum compression of the spring that occurs?

  • 1 45 kg is released from rest from the top of a rough ramp, with Mass...

    1 45 kg is released from rest from the top of a rough ramp, with Mass - coefficient of kinetic friction 0.25 between the block and the incline, of height 3.2 m and length d 5.5 m. At the bottom of the ramp, the mass slides on a horizontal, frictionless surface until it compresses a spring of spring constant k 2. 110 N/m. a. Calculate the speed of the mass at the bottom of the ramp? b. How far does...

  • A 3 kg block slides from the top of a 3.4 m high frictionless incline. At...

    A 3 kg block slides from the top of a 3.4 m high frictionless incline. At the bottom of the incline the block encounters a spring with a spring constant of 400 N/m on a horizontal surface. How far is the spring compressed? The correct answer is 0.71 meters but I need the worked out solution!

  • 2. Starting from rest, a block of mass m slides down a frictionless incline at angle...

    2. Starting from rest, a block of mass m slides down a frictionless incline at angle θ(0◦ < θ < 90◦) where it runs into a spring of spring constant k. When the block momentarily stops, it has compressed the spring by distance x. Find expressions for (a) the distance the block slides down the incline from when it is released to when it momentarily stops (b) the distance between the point of the first block-spring contact and the point...

  • A 5.0 kg box slides down a 5.0-m-high frictionless hill, starting from rest, across a 2.0-m-wide...

    A 5.0 kg box slides down a 5.0-m-high frictionless hill, starting from rest, across a 2.0-m-wide horizontal surface, then hits a horizontal spring with spring constant 500 N/m. The other end of the spring is anchored against a wall. The ground under the spring is frictionless, but the 2.0-m-wide horizontal surface is rough. The coefficient of kinetic friction of the box on this surface is 0.25. (a) What is the speed of the box just before reaching the rough surface?...

  • Use work and energy to find an expression for the speed of the block just before...

    Use work and energy to find an expression for the speed of the block just before it hits the floor if: the coefficient of kinetic friction for the block on the table is mu_k. the table is frictionless. A 5.0 kg box slides down a 5.0-m-high frictionless hill, starting from rest, across a 2.0-m-wide horizontal stir face, then hits a horizontal spring with spring constant 500 N/m. The other end of the spring is anchored against a wall. The ground...

  • A mass 3 kg is released from rest at a height of 5 meters and slides...

    A mass 3 kg is released from rest at a height of 5 meters and slides down a frictionless curve. There is a patch that is 3 meters long with a kinetic coefficient of 0.2. Beyond that friction patch is a spring with a spring constant of 400 N/m. (There is no friction under the spring.) Calculate the maximum compression distance (x) needed to stop the mass the first time It compresses the spring. Calculate where exactly the mass stops...

  • 3.0 kg block slides down a frictionless ramp of height 3.0 meters starting from rest. it then tra...

    3.0 kg block slides down a frictionless ramp of height 3.0 meters starting from rest. it then traverses a 2.0 metter rough patch with a coefficient of kinetic friction 0.35 It then gets to a smooth area where it compresses a horizontal spring of spring constant 50 n/m. Please help me Solve the rest of the physics problem The answers to part A is x= 1.64 meters and part b is 1.58 meters Problem 1 A 3.0 kg block slides...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT