Question

45 kg is released from rest from the top of a rough ramp, with Mass - coefficient of kinetic friction 0.25 between the block and the incline, of height 3.2 m and length d 5.5 m. At the bottom of the ramp, the mass slides on a horizontal, frictionless surface until it compresses a spring of spring constant k 2. 110 N/m. a. Calculate the speed of the mass at the bottom of the ramp? b. How far does the spring compress? c. How much work does gravity do on the mass when it slides down the ramp? d. How much work does the spring do on the mass during the compression? e. Calculate the work done by friction during the slide down the ramp. f. What is the total work done on the mass during the interval from the moment it is released to the moment the spring is fully compressed?

1

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
1 45 kg is released from rest from the top of a rough ramp, with Mass...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A solid block of mass 60.0 kg starts from rest and slides down a rough surface...

    A solid block of mass 60.0 kg starts from rest and slides down a rough surface with a length of 10.0 m where the coefficient of friction is uk=0.20. The surface is inclined at 40.0°. After sliding 10 meters down the incline it hits a spring with a spring constant of ks = 550.0 N/m. Draw a freebody Diagram indicating all forces. Write out and solve the force and energy equations. How high is the block above the spring at...

  • 3.0 kg block slides down a frictionless ramp of height 3.0 meters starting from rest. it then tra...

    3.0 kg block slides down a frictionless ramp of height 3.0 meters starting from rest. it then traverses a 2.0 metter rough patch with a coefficient of kinetic friction 0.35 It then gets to a smooth area where it compresses a horizontal spring of spring constant 50 n/m. Please help me Solve the rest of the physics problem The answers to part A is x= 1.64 meters and part b is 1.58 meters Problem 1 A 3.0 kg block slides...

  • 7, A block of mass 4.00 kg is released from rest near the top of an...

    7, A block of mass 4.00 kg is released from rest near the top of an inclined plane, where θ 30.00. It slides with friction down the incline and then contacts and compresses an ideal spring that is rigidly mounted parallel to the incline near the bottom. The spring has a force constant of 500.0 N/m and it compresses a maximum distance x. If d = 200 meters and 0.300 meter, what is the coefficient of friction between the block...

  • A 19.0-kg block is released from rest on a frictionless 35.0 incline. Below the block is...

    A 19.0-kg block is released from rest on a frictionless 35.0 incline. Below the block is a spring that can be compressed 3.60 cm by a force of 270 N. After the block is released, the block slides down the frictionless ramp and compresses the spring by 5.50 cm. How fast is the block traveling the moment it reaches the spring?

  • A 4.00 kg block starts sliding from rest from the top of a frictionless incline, the...

    A 4.00 kg block starts sliding from rest from the top of a frictionless incline, the mass slides along a horizontal surface and collides with a spring compressing it a distance x. The spring will compress 3 meters with an applied force of 300N. A) Calulate the speed of the block at the halfway down the incline. B) Calculate the speed of the block at the bottom of the incline C) How much work is done on the block by...

  • A 25.0-kg crate is initially at rest at the top of a ramp that is inclined...

    A 25.0-kg crate is initially at rest at the top of a ramp that is inclined at an angle θ = 30.0 ◦ above the horizontal. You release the crate and it slides 1.25 m down the ramp before it hits a spring attached to the bottom of the ramp. The coefficient of kinetic friction between the crate and the ramp is 0.400 and the constant of the spring is k = 5000 N/m. How far does the crate compress...

  • An object of mass 3kg is released from rest from a height h of 13 meters...

    An object of mass 3kg is released from rest from a height h of 13 meters above the ground on a ramp. The object then slides down along a horizontal surface along a distance of d=20 meters where friction is present (\mu_s=0.5 and \mu_k=0.2), and compresses a horizontal spring initially unstretched until it finally comes to rest. If k=300N/m, by how much does the spring compresses (maximally) upon impact?

  • An initially stationary block of mass 0.5kg is on an incline angled 20° above the horizontal....

    An initially stationary block of mass 0.5kg is on an incline angled 20° above the horizontal. When released, it slides down the frictionless incline undergoing a vertical displacement of 4m and then travels across a rough horizontal surface to a spring constant 600 N/m. The block compresses the spring 20 cm from its equilibrium position before momentarily coming to a stop. D.) Naturally after momentarily stopping on the incline, the block will slide back down. Does it make it to...

  • An object with a mass, m = 5 kg, is released from rest at the top...

    An object with a mass, m = 5 kg, is released from rest at the top of the ramp. The length of the ramp is 2.3 m. The object slides down the ramp reaching a speed of 2.1 m/s at the bottom. a) If the friction force between the ramp and the object is 3 N, find the angle between the ramp and the horizontal theta (in degrees). b) What speed (in m/s) does the object reach at the bottom...

  • A block of mass M = 4.000 kg is released from rest at the top of...

    A block of mass M = 4.000 kg is released from rest at the top of an incline of angle θ = 24.0º w.r.t. the horizontal. The coefficient of kinetic friction between the block and the incline is µk = 0.200 and the length of the incline (hypothenuse of the triangle shown below) is L = 6.00 m. ( w.r.t. = with respect to) I am trying to find: a. The work done by the normal force for the complete...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT