Question

A 19.0-kg block is released from rest on a frictionless 35.0 incline. Below the block is...

A 19.0-kg block is released from rest on a frictionless 35.0 incline. Below the block is a spring that can be compressed 3.60 cm by a force of 270 N. After the block is released, the block slides down the frictionless ramp and compresses the spring by 5.50 cm. How fast is the block traveling the moment it reaches the spring?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

24u5=zX97
V = XVI , K-E 270 X 0.0360 = 7500N/m

–7500 V = 0.0550 times VG ) = 1.09m/s

Add a comment
Know the answer?
Add Answer to:
A 19.0-kg block is released from rest on a frictionless 35.0 incline. Below the block is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In the figure, a block of mass m = 11 kg is released from rest on...

    In the figure, a block of mass m = 11 kg is released from rest on a frictionless incline of angle θ = 26°. Below the block is a spring that can be compressed 3.4 cm by a force of 320 N. The block momentarily stops when it compresses the spring by 5.3 cm. (a) How far does the block move down the incline from its rest position to this stopping point? (b) What is the speed of the block...

  • M -/2 points HRW6 8.P.021 In Fig. 8-34, a 12 kg block is released from rest on an incline angled at e 30. Below the blo...

    M -/2 points HRW6 8.P.021 In Fig. 8-34, a 12 kg block is released from rest on an incline angled at e 30. Below the block is a spring that can be compressed 2.0 cm by a force of 270 N The block momentarily stops when it compresses the spring by 6.4 cm. 12 kg Figure 8-34 (a) How far has the block moved down the incline to this stopping point? m (b) What is the speed of the block...

  • 1 45 kg is released from rest from the top of a rough ramp, with Mass...

    1 45 kg is released from rest from the top of a rough ramp, with Mass - coefficient of kinetic friction 0.25 between the block and the incline, of height 3.2 m and length d 5.5 m. At the bottom of the ramp, the mass slides on a horizontal, frictionless surface until it compresses a spring of spring constant k 2. 110 N/m. a. Calculate the speed of the mass at the bottom of the ramp? b. How far does...

  • A block of mass 11.0 kg slides from rest down a frictionless 33.0° incline and is...

    A block of mass 11.0 kg slides from rest down a frictionless 33.0° incline and is stopped by a strong spring with k = 2.80 ✕ 104 N/m. The block slides 3.00 m from the point of release to the point where it comes to rest against the spring. When the block comes to rest, how far has the spring been compressed?

  • 8. A 30.0-kg block slides down a frictionless incline. If the block starts from rest and...

    8. A 30.0-kg block slides down a frictionless incline. If the block starts from rest and has a speed of 3.00-m/s at the bottom, at what vertical distance did the block start its descent Answer: 0.459 m 9. It is found that a force of 18-N is required to stretch a spring by 0.300 meters from its natural length. (a) What is the spring constant of the spring? (b) How much energy is stored in the spring when it is...

  • 7, A block of mass 4.00 kg is released from rest near the top of an...

    7, A block of mass 4.00 kg is released from rest near the top of an inclined plane, where θ 30.00. It slides with friction down the incline and then contacts and compresses an ideal spring that is rigidly mounted parallel to the incline near the bottom. The spring has a force constant of 500.0 N/m and it compresses a maximum distance x. If d = 200 meters and 0.300 meter, what is the coefficient of friction between the block...

  • Question 3. A block A, having a mass of 20-kg, is released from rest and slides...

    Question 3. A block A, having a mass of 20-kg, is released from rest and slides down an incline with coeffici an incline with coefficient of static d kinetic friction of 0.25 and 0.10, respectively. When it reaches the bottom of the ramp, it slides ally onto the surface of a 10-kg cart for which the coefficient of static and kinetic friction between Question 3. A block A, having a mass of 20-kg, is released from rest and slides down...

  • A 3.90 kg block starts from rest and slides down a frictionless incline, dropping a vertical...

    A 3.90 kg block starts from rest and slides down a frictionless incline, dropping a vertical distance of 3.20 m, before compressing a spring of force constant 2.28 104 N/m. Find the maximum compression of the spring.

  • A 4.00 kg block starts sliding from rest from the top of a frictionless incline, the...

    A 4.00 kg block starts sliding from rest from the top of a frictionless incline, the mass slides along a horizontal surface and collides with a spring compressing it a distance x. The spring will compress 3 meters with an applied force of 300N. A) Calulate the speed of the block at the halfway down the incline. B) Calculate the speed of the block at the bottom of the incline C) How much work is done on the block by...

  • 3.0 kg block slides down a frictionless ramp of height 3.0 meters starting from rest. it then tra...

    3.0 kg block slides down a frictionless ramp of height 3.0 meters starting from rest. it then traverses a 2.0 metter rough patch with a coefficient of kinetic friction 0.35 It then gets to a smooth area where it compresses a horizontal spring of spring constant 50 n/m. Please help me Solve the rest of the physics problem The answers to part A is x= 1.64 meters and part b is 1.58 meters Problem 1 A 3.0 kg block slides...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT