Question

A 3.90 kg block starts from rest and slides down a frictionless incline, dropping a vertical...

A 3.90 kg block starts from rest and slides down a frictionless incline, dropping a vertical distance of 3.20 m, before compressing a spring of force constant 2.28 104 N/m. Find the maximum compression of the spring.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A 3.90 kg block starts from rest and slides down a frictionless incline, dropping a vertical...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 8. A 30.0-kg block slides down a frictionless incline. If the block starts from rest and...

    8. A 30.0-kg block slides down a frictionless incline. If the block starts from rest and has a speed of 3.00-m/s at the bottom, at what vertical distance did the block start its descent Answer: 0.459 m 9. It is found that a force of 18-N is required to stretch a spring by 0.300 meters from its natural length. (a) What is the spring constant of the spring? (b) How much energy is stored in the spring when it is...

  • A 3.90-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 3.90-kg block starts from rest at the top of a 30.0° incline and slides a distance of 2.10 m down the incline in 2.00 s. (a) Find the magnitude of the acceleration of the block. (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. (d) Find the speed of the block after it has slid 2.10 m.

  • A 4.00 kg block starts sliding from rest from the top of a frictionless incline, the...

    A 4.00 kg block starts sliding from rest from the top of a frictionless incline, the mass slides along a horizontal surface and collides with a spring compressing it a distance x. The spring will compress 3 meters with an applied force of 300N. A) Calulate the speed of the block at the halfway down the incline. B) Calculate the speed of the block at the bottom of the incline C) How much work is done on the block by...

  • A block of mass 11.0 kg slides from rest down a frictionless 33.0° incline and is...

    A block of mass 11.0 kg slides from rest down a frictionless 33.0° incline and is stopped by a strong spring with k = 2.80 ✕ 104 N/m. The block slides 3.00 m from the point of release to the point where it comes to rest against the spring. When the block comes to rest, how far has the spring been compressed?

  • A 9.00-kg block slides down a frictionless plane having an incline of 27.0 The block starts...

    A 9.00-kg block slides down a frictionless plane having an incline of 27.0 The block starts from rest from the top of the incline, and the length of the incline is 2.00 m. Draw a free-body diagram for the block. Determine the normal force acting on the block Answer: Check If the block starts from rest, determine the speed of the block at the bottom of the incline. (Hint: determine the acceleration of the block down the incline, then use...

  • A 2.10-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 2.10-kg block starts from rest at the top of a 30.0° incline and slides a distance of 2.10 m down the incline in 1.00 s. (a) Find the magnitude of the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. magnitude N direction ---Select--- up the incline down the incline normal to the incline and upward normal to the incline and downward (d)...

  • 2. Starting from rest, a block of mass m slides down a frictionless incline at angle...

    2. Starting from rest, a block of mass m slides down a frictionless incline at angle θ(0◦ < θ < 90◦) where it runs into a spring of spring constant k. When the block momentarily stops, it has compressed the spring by distance x. Find expressions for (a) the distance the block slides down the incline from when it is released to when it momentarily stops (b) the distance between the point of the first block-spring contact and the point...

  • A 100kg block starts from rest and slides 4m down a frictionless 30°. Its motion is...

    A 100kg block starts from rest and slides 4m down a frictionless 30°. Its motion is halted by a spring (k-5N/m). 4m 1) What is the speed of the block just as it reaches the spring? 2) Find the maximum compression of the spring

  • a block with a mass of 2.5 kg starts from rest at the top of the...

    a block with a mass of 2.5 kg starts from rest at the top of the apparatus shown below. it then slides without friction down the incline, and collides with a spring attached to a wall. The spring has a spring constant of K=120N/m. Using the principle of energy conservation, a. find the initial gravitational potential energy of the block at point A b. find the kinetic energy of the block at point B c. what is the velocity of...

  • A 3.60-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 3.60-kg block starts from rest at the top of a 30.0° incline and slides a distance of 1.70 m down the incline in 1.40 s. (a) Find the magnitude of the acceleration of the block.m/s2 (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. (d) Find the speed of the block after it has slid 1.70 m.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT