Question

In the figure, a block of mass m = 11 kg is released from rest on...

In the figure, a block of mass m = 11 kg is released from rest on a frictionless incline of angle θ = 26°. Below the block is a spring that can be compressed 3.4 cm by a force of 320 N. The block momentarily stops when it compresses the spring by 5.3 cm. (a) How far does the block move down the incline from its rest position to this stopping point? (b) What is the speed of the block just as it touches the spring?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
In the figure, a block of mass m = 11 kg is released from rest on...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • M -/2 points HRW6 8.P.021 In Fig. 8-34, a 12 kg block is released from rest on an incline angled at e 30. Below the blo...

    M -/2 points HRW6 8.P.021 In Fig. 8-34, a 12 kg block is released from rest on an incline angled at e 30. Below the block is a spring that can be compressed 2.0 cm by a force of 270 N The block momentarily stops when it compresses the spring by 6.4 cm. 12 kg Figure 8-34 (a) How far has the block moved down the incline to this stopping point? m (b) What is the speed of the block...

  • 2. Starting from rest, a block of mass m slides down a frictionless incline at angle...

    2. Starting from rest, a block of mass m slides down a frictionless incline at angle θ(0◦ < θ < 90◦) where it runs into a spring of spring constant k. When the block momentarily stops, it has compressed the spring by distance x. Find expressions for (a) the distance the block slides down the incline from when it is released to when it momentarily stops (b) the distance between the point of the first block-spring contact and the point...

  • Show major steps and formulas involved!!!!, please really need to understand how to get the results,...

    Show major steps and formulas involved!!!!, please really need to understand how to get the results, show how you got them please!!! *-29 SSM WWW In Fig. 8-40, a block of mass m = 12 kg is re- leased from rest on a frictionless incline of angle 0 = 30°. Below the block is a spring that can be compressed 2.0 cm by a force of 270 N. The block momentarily stops when it compresses the spring by 5.5 cm....

  • A block whose mass is m shown in the following figure, the angle of the incline...

    A block whose mass is m shown in the following figure, the angle of the incline being 6-30°. The block comes to rest momentarily after it has compressed the spring by 5 cm. Assume that the contact benween the block and the incline sunface is frictionless 2. 3 kg is released from rest at the top of the incline as TR (a) If the distance d that the block moved down the incline is 1 m at this [10 marks]...

  • Question 5 In the figure, a block of mass m = 3.50 kg slides from rest...

    Question 5 In the figure, a block of mass m = 3.50 kg slides from rest a distance d down a frictionless incline at angle 9 = 27.0° where it runs into a spring of spring constant 470 N/m. When the block momentarily stops, it has compressed the spring by 20.0 cm. What are (a) distance d and (b) the distance between the point of the first block-spring contact and the point where the block's speed is greatest? A (a)...

  • A 19.0-kg block is released from rest on a frictionless 35.0 incline. Below the block is...

    A 19.0-kg block is released from rest on a frictionless 35.0 incline. Below the block is a spring that can be compressed 3.60 cm by a force of 270 N. After the block is released, the block slides down the frictionless ramp and compresses the spring by 5.50 cm. How fast is the block traveling the moment it reaches the spring?

  • 1a. 1b. 1c. A single conservative force = (AX - B) N, where x is in...

    1a. 1b. 1c. A single conservative force = (AX - B) N, where x is in meters, and A and B are positive constants, acts on a particle moving along an x axis. The potential energy U associated with this force is assigned a value of 0 at x = 0. (a) Write an expression for the potential energy associated with this force. (b) What is the maximum positive value of the potential energy? In the figure, a block of...

  • 3m Susand a) A block with a mass of 10.0 kg is AS released from rest...

    3m Susand a) A block with a mass of 10.0 kg is AS released from rest at the top of an 1 00.kg inclined track (0 = 30°), at point A, 3.0m above the horizontal (see the figure). The track A to B has a coefficient of kinetic friction of 0.10. The horizontal portion of the track, B to C, is 4.Om long - 4m and is frictionless. At point C, where the horizontal track ends, the block touches the...

  • (a) A 15.0 kg block is released from rest at point A in the figure below.

    (a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,200 N / m, and compresses the spring 0.250 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface...

  • Chapter 08, Problem 030- second time asking this question....only need part A A 2.3 kg breadbox...

    Chapter 08, Problem 030- second time asking this question....only need part A A 2.3 kg breadbox on a frictionless incline of angle θ = 38 ˚ is connected, by a cord that runs over a pulley, to a light spring of spring constant k = 120 N/m, as shown in the figure. The box is released from rest when the spring is unstretched. Assume that the pulley is massless and frictionless. (a) What is the speed of the box when...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT