Question

Question 5 In the figure, a block of mass m = 3.50 kg slides from rest a distance d down a frictionless incline at angle 9 =

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Question 5 In the figure, a block of mass m = 3.50 kg slides from rest...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. Starting from rest, a block of mass m slides down a frictionless incline at angle...

    2. Starting from rest, a block of mass m slides down a frictionless incline at angle θ(0◦ < θ < 90◦) where it runs into a spring of spring constant k. When the block momentarily stops, it has compressed the spring by distance x. Find expressions for (a) the distance the block slides down the incline from when it is released to when it momentarily stops (b) the distance between the point of the first block-spring contact and the point...

  • In the figure, a block of mass m = 11 kg is released from rest on...

    In the figure, a block of mass m = 11 kg is released from rest on a frictionless incline of angle θ = 26°. Below the block is a spring that can be compressed 3.4 cm by a force of 320 N. The block momentarily stops when it compresses the spring by 5.3 cm. (a) How far does the block move down the incline from its rest position to this stopping point? (b) What is the speed of the block...

  • A block of mass 11.0 kg slides from rest down a frictionless 33.0° incline and is...

    A block of mass 11.0 kg slides from rest down a frictionless 33.0° incline and is stopped by a strong spring with k = 2.80 ✕ 104 N/m. The block slides 3.00 m from the point of release to the point where it comes to rest against the spring. When the block comes to rest, how far has the spring been compressed?

  • A block whose mass is m shown in the following figure, the angle of the incline...

    A block whose mass is m shown in the following figure, the angle of the incline being 6-30°. The block comes to rest momentarily after it has compressed the spring by 5 cm. Assume that the contact benween the block and the incline sunface is frictionless 2. 3 kg is released from rest at the top of the incline as TR (a) If the distance d that the block moved down the incline is 1 m at this [10 marks]...

  • In the figure below, a block of mass m = 2.0 kg slides head into a spring of spring constant k = 320 N/m. When the bloc...

    In the figure below, a block of mass m = 2.0 kg slides head into a spring of spring constant k = 320 N/m. When the block stops, it has compressed the spring by 6.5 cm. The coefficient of kinetic friction between the block and floor is 0.15. (a) While the block is in contact with the spring and being brought to rest, how much work is done by the spring force? (b) What is the increase in the thermal...

  • 1a. 1b. In the figure below, a block slides along a track from one level to...

    1a. 1b. In the figure below, a block slides along a track from one level to a higher level after passing through an intermediate valley. The track is frictionless until the block reaches the higher level. There a frictional force stops the block in a distance d. The block's initial speed is vo; the height difference is h and the coefficient of kinetic friction is Wk. Find d in terms of the given variables (use g where applicable). u-0- In...

  • A block of mass m = 7.40 kg is released from rest from point and slides...

    A block of mass m = 7.40 kg is released from rest from point and slides on the frictionless track shown in the figure below. (Let h_a = 5.20 m.) Determine the block's speed at points Where is the energy stored at point A? Where is the energy stored at point B? m/s Determine the net work done by the gravitational force on the block as it moves from point to point

  • A block with mass m = 1.86 kg is placed against a spring on a frictionless...

    A block with mass m = 1.86 kg is placed against a spring on a frictionless incline with angle θ = 33.9° (see the figure). (The block is not attached to the spring.) The spring, with spring constant k = 25 N/cm, is compressed 28.1 cm and then released. (a) What is the elastic potential energy of the compressed spring? (b) What is the change in the gravitational potential energy of the block-Earth system as the block moves from the...

  • In the figure below, block-2 of mass M = 1 Kg is at rest on a...

    In the figure below, block-2 of mass M = 1 Kg is at rest on a frictionless surface and touching the end of an un-stretched spring whose spring constant is 200 N/m. The other end of the spring is fixed to a wall. Block-1 of mass 2 Kg, travelling at speed v_1 = 4 m/s, collides with block-2 and the two blocks stick together. When the blocks momentarily stop, by what distance is the spring compressed?

  • Chapter 09, Problem 058 In the figure, block 2 (mass 1.40 kg) is at rest on...

    Chapter 09, Problem 058 In the figure, block 2 (mass 1.40 kg) is at rest on a frictionless surface and touching the end of an unstretched spring of spring constant 109 N/m. The other end of the spring is foxed to a wall. Block 1 (mass 1.20 kg), traveling at speed v1 - 4.10 m/s, collides with block 2, and the two blocks stick together. When the blocks momentarily stop, by what distance is the spring compressed? Number Units

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT