Question

In the figure below, a block of mass m = 2.0 kg slides head into a spring of spring constant k = 320 N/m. When the block stop

0 0
Add a comment Improve this question Transcribed image text
Answer #1

K 3N 6-5 c Mк- 0-15 Kx 320x a Work done 22 WO.676 J fricHan twone done b Incresye in hernal energy W Aкmgxx 3D O.191 J O.15X9Please rate. It will help for my CF score. Thanks in advanced.

Add a comment
Know the answer?
Add Answer to:
In the figure below, a block of mass m = 2.0 kg slides head into a spring of spring constant k = 320 N/m. When the bloc...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1a. 1b. In the figure below, a block slides along a track from one level to...

    1a. 1b. In the figure below, a block slides along a track from one level to a higher level after passing through an intermediate valley. The track is frictionless until the block reaches the higher level. There a frictional force stops the block in a distance d. The block's initial speed is vo; the height difference is h and the coefficient of kinetic friction is Wk. Find d in terms of the given variables (use g where applicable). u-0- In...

  • In the figure below, a 4.0 kg block is accelerated from rest by a compressed spring...

    In the figure below, a 4.0 kg block is accelerated from rest by a compressed spring of spring constant 600 N/m. The block leaves the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction uk= 0.30.The frictional force stops the block in the distance of D = 8.0 m. -- No friction a) Find the increase in the thermal energy of the block-floor system b) What is the original compression...

  • In the figure, a 2.6 kg block is accelerated from rest by a compressed spring of...

    In the figure, a 2.6 kg block is accelerated from rest by a compressed spring of spring constant 660 N/m. The block leaves the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction ?k = 0.272. The frictional force stops the block in distance D = 7.9 m. What are (a) the increase in the thermal energy of the block In the figure, a 2.6 kg block is accelerated from...

  • In the figure below, a 3.0 kg block is accelerated from rest by a compressed spring...

    In the figure below, a 3.0 kg block is accelerated from rest by a compressed spring of spring constant 640 N/m. The block leaves the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction μk = 0.25. The frictional force stops the block in distance 6.2 m. (a) What is the increase in the thermal kinetic energy of the block floor system? ___J (b) What was the maximum kinetic energy...

  • In the figure, a 4.2 kg block is accelerated from rest by a compressed spring of...

    In the figure, a 4.2 kg block is accelerated from rest by a compressed spring of spring constant 650 N/m. The block leaves the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction WK = 0.264. The frictional force stops the block in distance D = 7.8 m. What are (a) the increase in the thermal energy of the block-floor system, (b) the maximum kinetic energy of the block, and...

  • Question 5 In the figure, a block of mass m = 3.50 kg slides from rest...

    Question 5 In the figure, a block of mass m = 3.50 kg slides from rest a distance d down a frictionless incline at angle 9 = 27.0° where it runs into a spring of spring constant 470 N/m. When the block momentarily stops, it has compressed the spring by 20.0 cm. What are (a) distance d and (b) the distance between the point of the first block-spring contact and the point where the block's speed is greatest? A (a)...

  • A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m.

    A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 25° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk=0.18. In the initial position, where the spring is compressed by a distance of d = 0.12 m, the mass is at its lowest...

  • A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m

    A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 28° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.19. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...

  • In the figure, a 2.8 kg block is accelerated from rest by a compressed spring of...

    In the figure, a 2.8 kg block is accelerated from rest by a compressed spring of spring constant 650 N/m. The block leaves the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction μk = 0.290. The frictional force stops the block in distance D = 7.8 m. What are (a) the increase in the thermal energy of the block–floor system, (b) the maximum kinetic energy of the block, and...

  • A block of mass 1.8 kg is attached to a horizontal spring that has a force constant 900 N/m as shown in the figure below

    A block of mass 1.8 kg is attached to a horizontal spring that has a force constant 900 N/m as shown in the figure below. The spring is compressed 2.0 cm and is then released from rest. (a) A constant friction force of 3.4 N retards the block's motion from the moment it is released. How much is the spring compressed when the speed of the block is a maximum. (b) What is the maximum speed?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT