Question

A person exerts a 15-N force on a cart attached to a spring and holds the...

A person exerts a 15-N force on a cart attached to a spring and holds the cart steady. The cart is displaced 0.060 m from its equilibrium position. When the person stops holding the cart, the system cart+spring undergoes simple harmonic motion. a) Determine the spring constant of the spring b) Determine the energy of the system c) Write expressions x(t), v(t), and a(t) for the motion of the cart d) Draw graphical representations of these expressions

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A person exerts a 15-N force on a cart attached to a spring and holds the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 0 FS10: A cart attached to a spring is pulled back from the equilibrium position to...

    0 FS10: A cart attached to a spring is pulled back from the equilibrium position to a distance A, and then released. Determine the force, motion, and energy representations as the cart moves along the frictionless air track (see video in Canvas) position Position of Cart Force vector for Motion diagram (include at least three positionEnergy bar graph spring on cart dots-before, during & after this position, with velocity and acceleration vectors Air Track KU, x=1/2 A KU, Air roe...

  • "A horizontal spring with force constant k = 810 N/m is attached to a wall on...

    "A horizontal spring with force constant k = 810 N/m is attached to a wall on one end. The other end of the spring is attached to a 1.90 kg object that rests upon a frictionless countertop, as shown below." Help with any or all of these would be greatly appreciated, thank you! 3. [0/3 Points] DETAILS PREVIOUS ANSWERS SERCP11 13.4.OP.021. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER A horizontal spring with force constant k = 810 N/m is attached...

  • A body of mass m = 3.00 kg is attached to a horizontal spring with force...

    A body of mass m = 3.00 kg is attached to a horizontal spring with force constant k = 100 N/m. The body is displaced 10.0 cm from its equilibrium position and released. For the resulting simple harmonic motion, find The amplitude

  • A 2.8 ?? block attached to a massless spring and is displaced 35 ?? by a...

    A 2.8 ?? block attached to a massless spring and is displaced 35 ?? by a force of 927.5 ? across a smooth floor. The box is then let go and undergoes simple harmonic motion. Determine, a. The maximum acceleration of the block. b. The period of oscillation. c. The angular frequency. d. The speed at equilibrium. e. The velocity at ? = 16.2 ?�

  • A cart at the end of a spring undergoes simple harmonic motion of amplitude A =...

    A cart at the end of a spring undergoes simple harmonic motion of amplitude A = 10 cm and frequency 5.0 Hz. Assume that the cart is at x=−A when t=0. a. Determine the period of vibration. b. Write an expression for the cart's position as a function of time. c. Determine the position of the cart at 0.050 s. d. Determine the position of the cart at 0.100 s.

  • Problem3 A (2+0.1y) kg block attached to a spring undergoes simple harmonic motion described by x...

    Can you please answer both questions, Y=0 Problem3 A (2+0.1y) kg block attached to a spring undergoes simple harmonic motion described by x (30 cm) cos[(6.28 rad/s)t + /4) Determine (a) the amplitude, (b) the spring constant, (c) the frequency, (d) the maximum speed (e) maximum acceleration of the block, and (e) the total energy of the spring-block. of the block Problem 4 A block attached to a spring, undergoes simple harmonic motion with a period of 1.5 + y)...

  • One end of a spring with a force constant of k 10.0 N/m is attached to...

    One end of a spring with a force constant of k 10.0 N/m is attached to the end of a long horizontal frictionless track and the other end is attached to a mass m = 2.20 kg which glides along the track. After you establish the equilibrium position of the mass-spring system, you move the mass in the negative direction (to the left), compressing the spring 1.73 m. You then release the mass from rest and start your stopwatch, that...

  • z waqod A 2- kg block attached to a spring undergoes simple harmonic motion described by...

    z waqod A 2- kg block attached to a spring undergoes simple harmonic motion described by = (30 cm) cos[(6.28 rad/s)t + /4]. Determine (a) the amplitude, (b) the spring constant, (c) the frequency, (d) the maximum speed of the block, (e) maximum acceleration of the block, and (e) the total energy of the spring-block. Problem 3 A block attached to a spring, undergoes simple harmonic motion with a period of 1.5 s, and amplitude of 20 cm. The mechanical...

  • A 2.5-kg object attached to an ideal spring with a force constant (spring constant) of 15...

    A 2.5-kg object attached to an ideal spring with a force constant (spring constant) of 15 N/m oscillates on a horizontal, frictionless track. At time t = 0.00 s, the cart is released from rest at position x = 8 cm from the equilibrium position. (a) What is the frequency of the oscillations of the object? (b) Determine the maximum speed of the cart. (c) Find the maximum acceleration of the mass (d) How much total energy does this oscillating...

  • When a mass of .350kg is attached to a vertical spring and lowered slowly, the spring...

    When a mass of .350kg is attached to a vertical spring and lowered slowly, the spring stretches 51.0cm. The mass is now displaced from its equilibrium position and undergoes a simple harmonic motion. What is the period of oscillation? Please follow the template below. List and laws or principles that apply and give a defintion. Draw a diagram. Show the formula you used and how you manipulated it, Show the steps you did. Thank you for your time.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT