Question

One end of a spring with a force constant of k 10.0 N/m is attached to the end of a long horizontal frictionless track and the other end is attached to a mass m = 2.20 kg which glides along the track. After you establish the equilibrium position of the mass-spring system, you move the mass in the negative direction (to the left), compressing the spring 1.73 m. You then release the mass from rest and start your stopwatch, that is x(t = 0)--A, and the mass executes simple harmonic motion about the equilibrium position. Determine the following (a) displacement of the mass (magnitude and direction) 1.0 s after it is released magnitude See if you can use the relationship between simple harmonic motion (SHM) and uniform circular motion to obtain an expression for the displacement of the oscillating mass at any time. m direction to the right (b) velocity of the mass (magnitude and direction) 1.0 s after it is released magnitude direction See if you can use the relationship between SHM and uniform circular motion to obtain an expression for the velocity of the oscillating mass at any time. m/s to the right (c) acceleration of the mass (magnitude and direction) 1.0 s after it is released magnitude direction See if you can use the relationship between SHM and uniform circular motion to obtain an expression for the acceleration of the oscillating mass at any time. m/s to the left (d) force the spring exerts on the mass (magnitude and direction) 1.0 s after it is released magnitude What does Hookes law tell us about the relationship between the force and the displacement? What does Newtons Second Law tell us about the relationship between the force and the acceleration? N direction to the left (e) How many times does the object oscillate in 12.0 s? (Do not round your answer to an integer.) oscillations

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
One end of a spring with a force constant of k 10.0 N/m is attached to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A mass m = 2.77 kg is attached to a spring of force constant k =...

    A mass m = 2.77 kg is attached to a spring of force constant k = 44.9 N/m and set into oscillation on a horizontal frictionless surface by stretching it an amount A = 0.11 m from its equilibrium position and then releasing it. The figure below shows the oscillating mass and the particle on the associated reference circle at some time after its release. The reference circle has a radius A, and the particle traveling on the reference circle...

  • QUESTION 10 When a 200 g mass attached to a horizontal spring (k= 25 N/m) is...

    QUESTION 10 When a 200 g mass attached to a horizontal spring (k= 25 N/m) is pushed 10 cm into the spring and released, it undergoes simple harmonic motion. Find the quantities below for this oscillating system: (a) The angular frequency (rad/sec) QUESTION 11 When a 200 g mass attached to a horizontal spring (k-25 N/m) is pushed 10 cm into the spring and released, it undergoes simple harmonic motion. Find the quantities below for this oscillating system. (b) Th...

  • A 0.4-kg glider attached to the end of an ideal spring with force constant k =...

    A 0.4-kg glider attached to the end of an ideal spring with force constant k = 500 N/m, undergoes SHM with an amplitude of 0.050 m. Compute: (a) the maximum speed of the glider, in m/s; A 0.4-kg glider attached to the end of an ideal spring with force constant k = 500 N/m, undergoes SHM with an amplitude of 0.050 m. Compute: (b) the speed (not velocity) of the glider when it is at x = -2 CENTIMETERS, in...

  • A 0.40-kg mass is attached to a spring with a force constant of k = 207...

    A 0.40-kg mass is attached to a spring with a force constant of k = 207 N/m, and the mass–spring system is set into oscillation with an amplitude of A = 2.0 cm. Determine the following. (a) mechanical energy of the system _____ J (b) maximum speed of the oscillating mass _____ m/s (c) magnitude of the maximum acceleration of the oscillating mass _____ m/s2 A 0.40-kg mass is attached to a spring with a force constant of k =...

  • A 2.5-kg, frictionless block is attached to an ideal spring with force constant 315N/m is undergoing...

    A 2.5-kg, frictionless block is attached to an ideal spring with force constant 315N/m is undergoing simple harmonic motion. When the block has displacement 0.27 m, it is moving in the negative x-direction with a speed 4 m/s part a: find the amplitude of the motion ? (........m) part b: find the magnitude of the maximum force the spring exerts on the block? (..........N) (I have only 1 left try in mastering physics, please help me thanks)

  • A block of mass m = 6.14 kg is attached to a spring with spring constant...

    A block of mass m = 6.14 kg is attached to a spring with spring constant k = 1682 N/m and rests on a frictionless surface. The block is pulled, stretching the spring a distance of 0.135 m, and is held still. The block is then released and moves in simple harmonic motion about the equilibrium position. (Assume that the block is stretched in the positive direction.) (b) Where is the block located 3.24 s after it is released? (Give...

  • A block attached to an ideal spring of force constant (spring constant) 15 N/m executes simple...

    A block attached to an ideal spring of force constant (spring constant) 15 N/m executes simple harmonic motion on a frictionless horizontal surface. At time t = 0 s, the block has a displacement of -0.90 m, a velocity of -0.80 m/s, and an acceleration of +2.9 m/s2 . The mass of the block is closest to? Please show all of your work step by step including formulas used and variables used. A) 2.3 kg B) 2.6 kg C) 4.7...

  • 1) A 7.5kg mass attached to a spring with a spring constant of 365 N/m oscillates...

    1) A 7.5kg mass attached to a spring with a spring constant of 365 N/m oscillates on a horizontal, frictionless track. Att 0, the mass is released from rest at x-2.32 cm. (That is, the spring is stretched by 2.32 cm.) (a) Determine the frequency of the oscillations. (b) Determine the maximum speed of the mass. Where does the maximum speed occur? (c) Determine the maximum acceleration of the mass. Where does the maximum acceleration occur? 2) A body is...

  • A 2.5-kg, frictionless block is attached to an ideal spring with force constant 315N/m is undergoing...

    A 2.5-kg, frictionless block is attached to an ideal spring with force constant 315N/m is undergoing simple harmonic motion. When the block has displacement 0.27 m, it is moving in the negative x-direction with a speed 4 m/s part a: find the amplitude of the motion ? (........m) part b: find the magnitude of the maximum force the spring exerts on the block? (..........N)

  • A 0.40-kg mass is attached to a spring with a force constant of k = 337...

    A 0.40-kg mass is attached to a spring with a force constant of k = 337 N/m, and the mass-spring system is set into oscillation with an amplitude of A = 3.1 cm. Determine the following. (a) mechanical energy of the system (b) maximum speed of the oscillating mass m/s (c) magnitude of the maximum acceleration of the oscillating mass m/s2

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT