Question

An ideal monatomic gas undergoes changes in pressure and volume, as shown in the pV diagram below. The initial volume is 0.02 m3 and the final volume is 0.10 m3 20 10 01 (a) Calculate the magnitude, or absolute value, of the Work done on the gas in this process. (Be careful with units. Your answer should be in Joules. 1 atm 1.013x 105 Pa.) (b)The work done ON the gas is: O positive O negative (c) The initial temperature of the gas is 291 K. Calculate the temperature of the gas at the end of the process. (d) What is the change in thermal energy for the gas in this process? (e) Calculate the quantity of heat transfer added to (positive) or removed from (negative) the gas during this process
0 0
Add a comment Improve this question Transcribed image text
Answer #1

- Anee under the gioph to connect to Pa wonk done + [2x1013 x10 x Co.i-0.06] 13, 149 J 13,169 J ative Inggatire Wonh done on
Kindly upvote:)

Add a comment
Know the answer?
Add Answer to:
An ideal monatomic gas undergoes changes in pressure and volume, as shown in the pV diagram...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 6. (25 points) One mole of a monatomic ideal gas, initially at pressure P1 = 105...

    6. (25 points) One mole of a monatomic ideal gas, initially at pressure P1 = 105 Pa and temperature T1 = 273 K undergoes an isovolumetric process in which its pressure falls to half its initial value. a) What is the work done by the gas? What is the final temperature? b) The gas then expands isobarically (constant pressure) to twice its initial volume. What is the work done by the gas? What is the final temperature? c) Draw a...

  • A container holds 4.5 mol of an ideal monatomic gas with a pressure of 125 kPa....

    A container holds 4.5 mol of an ideal monatomic gas with a pressure of 125 kPa. The container initially has a volume of 0.10 m3. The gas undergoes an adiabatic expansion until it reaches a volume of 0.3 m3 and a pressure of 20.0 kPa. What is the thermal energy of the gas after the expansion? How much energy went into or out of the gas as work during the expansion? (Positive for energy into the gas, negative for energy...

  • A quantity of a monatomic ideal gas undergoes a process in which both its pressure and...

    A quantity of a monatomic ideal gas undergoes a process in which both its pressure and volume are doubled as shown in the figure above. DATA: V0 = 0.39 m3 P0 = 12500 Pa. A. What is the change of the internal energy of the gas? B. What was the work done by the gas during the expansion? C. What amount of heat flowed into the gas during the expansion? 2Po Po 2 Vo Vo 2003 Thomson Brooks/Cole

  • A monatomic ideal gas at room temperature undergoes an adiabatic process such that its final pressure...

    A monatomic ideal gas at room temperature undergoes an adiabatic process such that its final pressure is 3.75 times its initial pressure. a) Did the gas expand or contract? (b) What is the ratio of its final volume to its initial volume? A monatomic ideal gas at room temperature undergoes an adiabatic process such that its final pressure is 3.75 times its initial pressure. (a) Did the gas expand or contract? o expand o contract (b) What is the ratio...

  • A Piston-cylinder heat engine containing a monatomic ideal gas undergoes the three processes drawn on the...

    A Piston-cylinder heat engine containing a monatomic ideal gas undergoes the three processes drawn on the p-V diagram below. The gas is initially at room temperature (300 K). Determine the total work done by the gas, and the total heat flow into the gas after completing one cycle. What is the thermal efficiency of this engine? Problem Statement A piston-cylinder heat engine containing a monatomic ideal gas undergoes the three processes drawn on the p-V diagram below. The gas is...

  • A quantity of a monatomic ideal gas undergoes a process in which both its pressure and...

    A quantity of a monatomic ideal gas undergoes a process in which both its pressure and volume are doubled as shown in the figure above. DATA: V0 = 0.23 m3 P0 = 14500 Pa. What is the change of the internal energy of the gas? Tries 0/20 What was the work done by the gas during the expansion? Tries 0/20 What amount of heat flowed into the gas during the expansion? Tries 0/20 Post Discussion We were unable to transcribe...

  • 13.A monatomic ideal gas (N=9.1x1023), undergoes adiabatic expansion. During the expansion, the temperature of the gas...

    13.A monatomic ideal gas (N=9.1x1023), undergoes adiabatic expansion. During the expansion, the temperature of the gas decreases from 800.0K to 500.OK. The initial volume of the gas is 0.10 m². a. What is the final volume and pressure of the gas, after expansion? b. What is the change in internal energy of the gas? C. Calculate the work associated with this process.

  • An ideal monatomic gas expands isothermally from 0.540 m3 to 1.25 m3 at a constant temperature...

    An ideal monatomic gas expands isothermally from 0.540 m3 to 1.25 m3 at a constant temperature of 570 K. If the initial pressure is 1.20 ✕ 105 Pa find the following. (a) the work done on the gas J (b) the thermal energy transfer Q J (c) the change in the internal energy J

  • 0.25 moles ofa monatomic ideal gas starts from point a (400Pa and Im3) in the diagram as shown. It undergoes a constant...

    0.25 moles ofa monatomic ideal gas starts from point a (400Pa and Im3) in the diagram as shown. It undergoes a constant pressure expansion from a to b (2m3); an isothermal process from b to c (3.2m3); a constant volume process c to d (125Pa); and an isothermal compression from d back to a. Problems 2-5 400 b a 300 2a. Find the temperature values Ta, Tb, Te and Td. 200 100 3 4 1 2 volume (m3) 2b. Find...

  • The state of an ideal gas can be represented by a point on a PV(pressure-volume)...

    The state of an ideal gas can be represented by a point on a PV (pressure-volume) diagram. If you know the quantity of gas, n, a unique point in pressure (P) and volume (V) can be used to determine a temperature (T). Each point on a PV diagram also has a single internal energy (U) assigned to it. If a process starts at a point and returns to that same point on a PV diagram, it returns to the same...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT