Question

figP12-12.gif

A quantity of a monatomic ideal gas undergoes a process in which both its pressure and volume are doubled as shown in the figure above.
DATA:
V0 = 0.23 m3
P0 = 14500 Pa.
What is the change of the internal energy of the gas?

Tries 0/20


What was the work done by the gas during the expansion?

Tries 0/20


What amount of heat flowed into the gas during the expansion?

Tries 0/20

Post Discussion

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Change in internal energy:

The internal energy of monatomic ideal gas at pressure P and volume V is given by .

Here, P = 2P0 and V = 2V0.

Therefore,

  

Now, change in internal energy is,

  

Here, P0 = 14500 Pa and

V0 = 0.23 m3

Change in internal energy

  = 15007.5 J

Work done during expansion :

The area under the path on a PV diagram is equal to the magnitude of work done on the gas.

Formula to calculate the area under PV diagram is,

• W1 is the width of the rectangle A

• H1 is the height of the rectangle A

• B1 is the base of the triangle B

• H2 is the height of the triangle B

Substitute V0 for W1, P0 for H1,V0 for B1 and P0 for H2 to find the area of the PV diagram.

  

Since the final volume is higher than the initial volume, the work done on the gas is negative.

Thus, the work done on the gas is,

  

  

= - 5002.5 J

Amount of heat flow during expansion :

Heat flow,  

= 15007.5 -(-5002.5)

= 15007.5 + 5002.5

= 20010 J

Add a comment
Know the answer?
Add Answer to:
A quantity of a monatomic ideal gas undergoes a process in which both its pressure and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A quantity of a monatomic ideal gas undergoes a process in which both its pressure and...

    A quantity of a monatomic ideal gas undergoes a process in which both its pressure and volume are doubled as shown in the figure above. DATA: V0 = 0.39 m3 P0 = 12500 Pa. A. What is the change of the internal energy of the gas? B. What was the work done by the gas during the expansion? C. What amount of heat flowed into the gas during the expansion? 2Po Po 2 Vo Vo 2003 Thomson Brooks/Cole

  • A 3-mole of a monatomic ideal gas undergoes an isothermal expansion at 450 K, as the...

    A 3-mole of a monatomic ideal gas undergoes an isothermal expansion at 450 K, as the volume increased from 0.010 m3 to 0.060 m3. What is the work done by the gas and the change in the internal energy of the gas respectively during this process? (R = 8.31 J/mol · K) 15.1 kJ, 3.6 kJ 20.1 kJ, O.O kJ 20.1 kJ, 18.5 kJ -17.2 kJ, 20.1 kJ -20.1 kJ, O kJ

  • (5 pts) 13. A monatomic ideal gas undergoes an adiabatic expansion (Q0). In this process what...

    (5 pts) 13. A monatomic ideal gas undergoes an adiabatic expansion (Q0). In this process what happens to the temperature of the gas? 001 ( Creos ToD a) decreases (b) doesn't change (c) increases 00 () sto() (5 pts) 14. A quantity of 4.00 moles of a monatomic ideal gas (C, 3R/2, C, - 5R/2) undergoes an isothermal process (AT = 0) at a constant temperature of T 300 K. In the process the volume of the gas increases from...

  • An ideal monatomic gas undergoes changes in pressure and volume, as shown in the pV diagram...

    An ideal monatomic gas undergoes changes in pressure and volume, as shown in the pV diagram below. The initial volume is 0.02 m3 and the final volume is 0.10 m3 20 10 01 (a) Calculate the magnitude, or absolute value, of the Work done on the gas in this process. (Be careful with units. Your answer should be in Joules. 1 atm 1.013x 105 Pa.) (b)The work done ON the gas is: O positive O negative (c) The initial temperature...

  • 13.A monatomic ideal gas (N=9.1x1023), undergoes adiabatic expansion. During the expansion, the temperature of the gas...

    13.A monatomic ideal gas (N=9.1x1023), undergoes adiabatic expansion. During the expansion, the temperature of the gas decreases from 800.0K to 500.OK. The initial volume of the gas is 0.10 m². a. What is the final volume and pressure of the gas, after expansion? b. What is the change in internal energy of the gas? C. Calculate the work associated with this process.

  • The figure shows a reversible cycle through which 2.44 mol of a monatomic ideal gas is...

    The figure shows a reversible cycle through which 2.44 mol of a monatomic ideal gas is taken. Assume that p = 2p0lV = 2V0,p0 = 3.91 times 105 Pa, and V0 = 0.0201 m3. Calculate (a) the work done during the cycle, (b) the energy added as heat during stroke abc, and (c) the efficiency of the cycle, (d) What is the efficiency of a Carnot engine operating between the highest and lowest temperatures that occur in the cycle? (e)...

  • A monatomic ideal gas undergoes isothermal expansion from 0.08 m3 to 0.22 m3 at a constant...

    A monatomic ideal gas undergoes isothermal expansion from 0.08 m3 to 0.22 m3 at a constant temperature (initial pressure is 310 kPa). What are its (a) internal energy change (ΔEΔE), (b) net heat transfer (Q), and (c) net work done (W)? Use negative quantity for heat transfer out of the system or work done on the system.

  • A container holds 4.5 mol of an ideal monatomic gas with a pressure of 125 kPa....

    A container holds 4.5 mol of an ideal monatomic gas with a pressure of 125 kPa. The container initially has a volume of 0.10 m3. The gas undergoes an adiabatic expansion until it reaches a volume of 0.3 m3 and a pressure of 20.0 kPa. What is the thermal energy of the gas after the expansion? How much energy went into or out of the gas as work during the expansion? (Positive for energy into the gas, negative for energy...

  • A monatomic ideal gas at room temperature undergoes an adiabatic process such that its final pressure...

    A monatomic ideal gas at room temperature undergoes an adiabatic process such that its final pressure is 3.75 times its initial pressure. a) Did the gas expand or contract? (b) What is the ratio of its final volume to its initial volume? A monatomic ideal gas at room temperature undergoes an adiabatic process such that its final pressure is 3.75 times its initial pressure. (a) Did the gas expand or contract? o expand o contract (b) What is the ratio...

  • A monatomic ideal gas has C p = 5R/2. In a constant pressure process at p...

    A monatomic ideal gas has C p = 5R/2. In a constant pressure process at p = 2.00x105 Pa, the volume of 0.500 moles of the gas is increased from 3.00x10-3 m3 to 9.00x10-3 m3 . For this process, the change in the internal energy of the gas is

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT