Question

The figure shows a reversible cycle through which

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a) Wab = 0

Wbc = p*(V - Vo)

= 2*po*(2*vo - vo)

= 2*3.91*10^5*(2*0.0201 - 0.0201)

= 15718 J

Wabc = Wab + Wbc

= 0 + 15718

= 15718 J <<<<<-------Answer


b) change in intenral energy, Uac = (3/2)*n*R*(T - To)

= (3/2)*(p*v - po*vo)

= (3/2)*(2*po*2*vo - po*vo)

= (9/2)*po*vo

= (9/2)*3.91*10^5*0.0201

= 35366 J

now Apply, dQ = dW + dU

dQ = 15718 + 35366

= 51084 J <<<<<-------Answer

c) effiecly, e = W/Q

= 15718/51084

= 0.3077 or 30.77 %

d) efficiency of cornot engine, n = 1 - To/T

= 1 - po*vo/(p*v)

= 1 - po*vo/(2*po*2*vo)

= 1 - 1/4

= 0.75 or 75 %


e) greater.

Add a comment
Know the answer?
Add Answer to:
The figure shows a reversible cycle through which 2.44 mol of a monatomic ideal gas is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two moles of a monatomic ideal gas goes through the cycle represented in Figure below. TA=420...

    Two moles of a monatomic ideal gas goes through the cycle represented in Figure below. TA=420 K; VA=0.025 m3 and VB=0.045 m3 . R=8.314 J/mol K.    a) Identify the process A-B, B-C and C-A (3) b) Calculate PA , PB and TC , the pressures and temperature reached in A,B and C. [9 marks] c) Complete the following table (on a separate document to be attached). Detail your work. [30 marks] i) A-B (8) ii) B-C (8) iii) C-A...

  • One mole of an ideal monatomic gas is taken through the reversible cycle shown in the figure Volu...

    One mole of an ideal monatomic gas is taken through the reversible cycle shown in the figure Volume Process B-C is an adiabatic expansion with PB-13.0 atm and V-4.00x103 m3. The volume at State C is 9.00Vg. Process A-B occurs at constant volume, and Process C A occurs at constant pressure. What is the energy added to the gas as heat for the cycle? Submit Answer Tries 0/10 What is the energy leaving the gas as heat? Submit Answer Tries...

  • The working substance of a certain Carnot engine is 1.80 mol of an ideal monatomic gas....

    The working substance of a certain Carnot engine is 1.80 mol of an ideal monatomic gas. During the isothermal expansion portion of this engine's cycle, the volume of the gas doubles, while during the adiabatic expansion the volume increases by a factor of 5.7. The work output of the engine is 900 J in each cycle. Compute the temperatures of the two reservoirs between which this engine operates.

  • Problem 8: Consider the reversible Carnot's cycle of an ideal monatomic gas in the cold cylinder...

    Problem 8: Consider the reversible Carnot's cycle of an ideal monatomic gas in the cold cylinder of 290 K corresponding to the isothermal compression step. Then the volume of the gas is further compressed by a factor of 7.5 in the adiabatic compression step. a) Find the temperature at the final step of the adiabatic compression. b) What is Thot for the isothermal expansion step? c) What is the maximum thermodynamic efficiency for this engine? d) How much would the...

  • A quantity of a monatomic ideal gas undergoes a process in which both its pressure and...

    A quantity of a monatomic ideal gas undergoes a process in which both its pressure and volume are doubled as shown in the figure above. DATA: V0 = 0.39 m3 P0 = 12500 Pa. A. What is the change of the internal energy of the gas? B. What was the work done by the gas during the expansion? C. What amount of heat flowed into the gas during the expansion? 2Po Po 2 Vo Vo 2003 Thomson Brooks/Cole

  • 2. First Law of Thermodynamics An engine takes 3.25 mole of an ideal monatomic He gas...

    2. First Law of Thermodynamics An engine takes 3.25 mole of an ideal monatomic He gas through the cycle shown in the figure. Note that the temperature of the gas does not change during process c-a. p(Pa X 105) a b 2.0 - V(m3) 0 0.010 0.040 Hints: Cp = Cv+ R. Monatomic and diatomic gases have a different number of degrees of freedom at intermediate temperatures like those in this problem. 1[Pa] = 1 [N/m2] is the metric unit...

  • A quantity of a monatomic ideal gas undergoes a process in which both its pressure and...

    A quantity of a monatomic ideal gas undergoes a process in which both its pressure and volume are doubled as shown in the figure above. DATA: V0 = 0.23 m3 P0 = 14500 Pa. What is the change of the internal energy of the gas? Tries 0/20 What was the work done by the gas during the expansion? Tries 0/20 What amount of heat flowed into the gas during the expansion? Tries 0/20 Post Discussion We were unable to transcribe...

  • 102) 2.37 moles of an ideal monatomic gas initially at 255 K undergoes this cycle: It...

    102) 2.37 moles of an ideal monatomic gas initially at 255 K undergoes this cycle: It is (1) heated at constant pressure to 655 K, (2) then allowed to cool at constant volume until its temperature returns to its initial value, (3) then compressed isothermally to its initial state. Find: a. the net energy transferred as heat to the gas (excluding the energy transferred as heat out of the gas). b. the net work done by the gas for the...

  • The PV - diagram in the figure below shows a cycle of a heat engine that uses 0.250 mol of an ideal gas with γ = 1.40....

    The PV - diagram in the figure below shows a cycle of a heat engine that uses 0.250 mol of an ideal gas with γ=1.40. The process a b is adiabatic. (1 atm=105 Pa)(i) Calculate the pressure of the gas at point a.(ii) Calculate how much heat enters this gas per cycle. Indicate the process(es) where this happens.(iii) Calculate how much heat leaves this gas in a cycle. Indicate the process(es) where this occurs.(iv) Calculate how much work the engine...

  • Suppose 0.270 mol of an ideal diatomic gas (γ=1.40) undergoes a Carnot cycle between 327C and...

    Suppose 0.270 mol of an ideal diatomic gas (γ=1.40) undergoes a Carnot cycle between 327C and 127C, starting at pa =12.0x105 Pa at point a in the pV-diagram for the Carnot cycle. The volume doubles during the isothermal expansion step a to b. (a) Find the pressure and volume at points a, b, c and d. (b) Find Q, W and dU for each step and for the entire cycle. (c) Find the efficiency directly from the results of part...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT