Question
Please help

8. An object of mass m-2Kg is attached to a horizontal spring of constant k-30 N/m and can move frictionless along a horizontal table. The other end of the spring is attached to a wall The spring is relaxed and the block is at rest. Then the block is pushed 3 cm to the left and released from rest. Considering positive x direction to the right, and t-0 the time of release, write the position equation as a function of time. Dont forget the initial phase! x:s
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Wall ーmass of-bbject, m= 2k Cons Spring τη block due also, from Neoons second Ja ofot an ore is defned F OSS 2. Solving this difesantal equatansince the-roots-of-Complemen tay.-funchan-k-- m a A CosAitt A and B are Some cons CoS t rm nch Meah3 --A E sin 10) + |E. β.cn (o).-o (ri Co

Since K = 30 N/m and m= 2kg. Therefore K/m = 15

x(t)= -3cos(15*t) cms

If you still have any confusion anywhere then please let me know in the comments section.

Thank you .

Add a comment
Know the answer?
Add Answer to:
Please help 8. An object of mass m-2Kg is attached to a horizontal spring of constant...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 2.00-kg object is free to slide on a horizontal surface. The object is attached to a spring of spring constant 300 N/m , and the other end of the spring is attached to a wall. The object is pulled i...

    A 2.00-kg object is free to slide on a horizontal surface. The object is attached to a spring of spring constant 300 N/m , and the other end of the spring is attached to a wall. The object is pulled in the direction away from the wall until the spring is stretched 50.0 mm from its relaxed position. The object is not released from rest, but is instead given an initial velocity of 2.50 m/s away from the wall. Ignore...

  • A 2.00-kg object is free to slide on a horizontal surface. The object is attached to...

    A 2.00-kg object is free to slide on a horizontal surface. The object is attached to a spring of spring constant 300 N/ m, and the other end of the spring is attached to a wall. The object is pulled in the direction away from the wall until the spring is stretched 50.0 mm from its relaxed position. The object is not released from rest but is instead given an initial velocity of 2.50 m/s away from the wall. Ignore...

  • A block of mass m = 0.59 kg is attached to a spring withforce constant...

    A block of mass m = 0.59 kg is attached to a spring with force constant 128 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.)        (a) At that instant, find the force on the block.          N        (b) At that...

  • A block of mass m = 2.00 kg is attached to a spring of force constant...

    A block of mass m = 2.00 kg is attached to a spring of force constant k = 465 N/m as shown in the figure below. The block is pulled to a position xi = 4.70 cm to the right of equilibrium and released from rest. A spring labeled k has its left end attached to a wall and its right end attached to a block labeled m. The block is initially at a location labeled x = 0. It...

  • A 0.20-kg block is attached to a light, horizontal spring of stiffness 64 N/m; the other...

    A 0.20-kg block is attached to a light, horizontal spring of stiffness 64 N/m; the other end of the spring is attached to a wall; the block is free to oscillate on a frictionless, horizontal surface. What is the time interval for one complete cycle? If the block is released from rest when the spring is stretched from its relaxed length by 3.0 cm, how much mechanical energy does the system possess? What is the maximum speed of the block?...

  • A 3.00-kg object is free to slide on a horizontal surface. The object is attached to...

    A 3.00-kg object is free to slide on a horizontal surface. The object is attached to a spring of spring constant 300 N/m ,and the other end of the spring is attached to a wall. The object is pulled in the direction away from the wall until the spring is stretched 70.0 mm from its relaxed position. The object is not released from rest, but is instead given an initial velocity of 2.50 m/s away from the wall. Ignore friction....

  • solve and show work A block of mass m = 1.91 kg attached to a horizontal...

    solve and show work A block of mass m = 1.91 kg attached to a horizontal spring with force constant k = 6.85 x 10' N/m that is secured to a wall is stretched a distance of 5.20 cm beyond the spring's relaxed position and released from rest. (a) What is the elastic potential energy of the block-spring system just before the block is released? 3 (b) What is the elastic potential energy of the block-spring system when the block...

  • a 2kg mass attached to a spring of k = 32 N/m is free to oscillate...

    a 2kg mass attached to a spring of k = 32 N/m is free to oscillate on a horizontal frictionless surface. the mass is displaced 8 cm to the the right of its equilibrium and set into motion with a leftward push of speed 40 cm/s c) now consider a simple pendulum that undergoes half as many oscillations per unit time as this mass. the pendulum is released from rest at position 1 and oscillates between position 1 and 3....

  • A horizontal spring with force constant k = 700 N/m is attached to a wall at...

    A horizontal spring with force constant k = 700 N/m is attached to a wall at one end and to a block of mass m = 2.30 kg at the other end that rests on a horizontal surface. The block is released from rest from a position 3.40 cm beyond the spring's equilibrium position. (a) If the surface is frictionless, what is the speed of the block as it passes through the equilibrium position? m/s (b) If the surface is...

  • A 205-g object is attached to a spring that has a force constant of 73.5 N/m....

    A 205-g object is attached to a spring that has a force constant of 73.5 N/m. The object is pulled 6.25 cm to the right of equilibrium and released from rest to slide on a horizontal, frictionless table. Calculate the maximum speed of the object Find locations of the object when its velocity is one-third of the maximum speed. Treat the equilibrium position as zero positions to the right as positive, and positions to the left as negative

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT