Question

0.3 m 3 kg 8 kg012 (part 1 of 4) 10.0 points A massless spring with force constant 277 N/m is fastened at its left end to a vertical wall, as shown below. The acceleration of gravity is 9.8 m/s 2 . Initially, the 8 kg block and 3 kg block rest on a horizontal surface with the 8 kg block in contact with the spring (but not compressing it) and with the 3 kg block in contact with the 8 kg block. The 8 kg block is then moved to the left, compressing the spring a distance of 0.3 m, and held in place while the 3 kg block remains at rest.Determine the elastic energy U stored in the compressed spring. Answer in units of J.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Elastic energy U=0.5kx2 = 0.5 x 277 x 0.3 x 0.3 = 12.465 J

In case of any doubt, please do comment sir.

Add a comment
Know the answer?
Add Answer to:
012 (part 1 of 4) 10.0 points A massless spring with force constant 277 N/m is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 012 (part 1 of 4) 10.0 points A massless spring with force constant 277 N/m is...

    012 (part 1 of 4) 10.0 points A massless spring with force constant 277 N/m is fastened at its left end to a vertical wall, as shown below. The acceleration of gravity is 9.8 m/s 2 . Initially, the 8 kg block and 3 kg block rest on a horizontal surface with the 8 kg block in contact with the spring (but not compressing it) and with the 3 kg block in contact with the 8 kg block. The 8...

  • 1. Block A (m 4.5 kg) has a massless spring attached to its side. Block B...

    1. Block A (m 4.5 kg) has a massless spring attached to its side. Block B (m 1.1 kg) is squeezed against the spring compressing it 0.12 m. The blocks are held this way at rest for a short period of time. The blocks are then released and explode away from each other. Block B flies east at 3.8 m/s. a. Calculate the speed and direction Block A travels after the release. b. Calculate the kinetic energy of block A...

  • wooden block with mass M 3 kg is lying on a horizontal table and is attached to a spring in its equilibrium position. It is hit by a bullet with mass m 5 g which moves horizontally. The bullet re...

    wooden block with mass M 3 kg is lying on a horizontal table and is attached to a spring in its equilibrium position. It is hit by a bullet with mass m 5 g which moves horizontally. The bullet remains in the block after colliding with it. The block moves on the table compressing the spring, with spring constant k 50 Nm, a distance 10 cm. The coefficient of kinetic friction uk 0.2. a) Find the elastic energy stored in...

  • Please show all work 1. A horizontal massless spring with spring constant 300 N/m is compressed...

    Please show all work 1. A horizontal massless spring with spring constant 300 N/m is compressed 20 cm. The spring launches the block of mass 1 kg. When the block reaches the other side of the room it compresses a massless spring 600 N/m as shown in the figure. The surface is frictionless except the small part of length 2m, which has a coefficient of kinetic friction 0.2. Find the maximum compression of the spring 600 N/m. 300 N/m 600N/m...

  • A light spring with force constant 35 N/m is compressed by 8.0 cm as it is...

    A light spring with force constant 35 N/m is compressed by 8.0 cm as it is held between a 0.25 kg block on the left and a 0.50 kg block on the right. Both blocks and the spring are resting on a horizontal surface. When the blocks are simultaneously released from rest, find the acceleration with which each block starts to move given that p 0.1 between the blocks and the surface.

  • A light spring with force constant 3.85 N/m is compressed by 8.0 cm as it is...

    A light spring with force constant 3.85 N/m is compressed by 8.0 cm as it is held between a 0.25 kg block on the left and a 0.50 kg block on the right. Both blocks and the spring are resting on a horizontal surface. When the blocks are simultaneously released from rest, find the acceleration with which each block starts to move given that uk 0.1 between the blocks and the surface.

  • 005 (part 1 of 4) 10.0 points A block of mass 49 kg slides along a...

    005 (part 1 of 4) 10.0 points A block of mass 49 kg slides along a friction- front of it, and moving in the opposite direc- tion with a speed of 13 m/s, is a block of mass 65 kg. A massless spring with spring constant 1566 N/m is attached to the second block as in the figure. 42 m/s 13 m/s 1566 N/m 49 kg 65 kg Before the 49 kg block makes contact with the spring, what is...

  • Q1. [20 held against a vertical wall, constant of k = 47.5 N/m.) ine that one...

    Q1. [20 held against a vertical wall, constant of k = 47.5 N/m.) ine that one of our spring-loaded carts (m 0.125 kg) is pushed and compressing the spring by a distance of 0.12 m. (The spring has a 0.12 m and spring inside your bound- ary. Draw the energy pie charts for the cart and spring at two moments in time: ) just after the cart has been released, while the spring is still totally loses contact with the...

  • please help with this problem! SPRING CONSTANT, known as "k", IS 18 N/m Situation: A 0.80-meter...

    please help with this problem! SPRING CONSTANT, known as "k", IS 18 N/m Situation: A 0.80-meter spring is set on top of a table. The tabletop is 1.0 meters in length. The table is pushed up against a wall and one end of the spring is attached to the wall. A woodblock of mass 0.1kg is placed at the other end of the free spring. The woodblock is pushed against the spring causing the spring to compress. When held in...

  • A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m.

    A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 25° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk=0.18. In the initial position, where the spring is compressed by a distance of d = 0.12 m, the mass is at its lowest...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT