Question

Two stars of mass m = 0.43 and M = 15.00 (in units of solar masses) separated by a distance d = 8.00 (in units of AU, the ear

0 0
Add a comment Improve this question Transcribed image text
Answer #1

br postion ef Cn. 34.334 2 34.834 2 t2 8AU T2 0.223 AU fos Circalar orb, 3mac C MM 2 JGMA 2 -7 d2 2TT 2 2T T= 11 V2 82x b.223

Add a comment
Know the answer?
Add Answer to:
Two stars of mass m = 0.43 and M = 15.00 (in units of solar masses)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Hi, may I get some help with explanation? Thank you Two stars of mass m =...

    Hi, may I get some help with explanation? Thank you Two stars of mass m = 0.60 and M = 74.00 (in units of solar masses) separated by a distance d = 8.00 (in units of AU, the earth-sun distance) revolve in circular orbits about their (common) center of mass as shown in the figure below. С. m. М d What is the orbital period of the smaller star in years?

  • 4) A binary star system consists of two stars, one of which is 1 solar mass...

    4) A binary star system consists of two stars, one of which is 1 solar mass and one of which is 2 solar masses. They are separated by a distance of 5 astronomical units and have approximately circular orbits. a) What is the orbital period of each star? b) What is the orbital velocity of each star? c) What is the angular momentum of the two star system, assuming that each star's radius is much smaller than its orbital radius?

  • op Plaskett's binary system consists of two stars that revolve In a circular orbit about a center of mass midway betwee...

    op Plaskett's binary system consists of two stars that revolve In a circular orbit about a center of mass midway between them. This statement implies that the masses of the two stars are equal (see figure below). Assume the orbital speed of each star is |v | = 240 km/s and the orbital period of each is 12.5 days. Find the mass M of each star. (For comparison, the mass of our Sun is 1.99 times 1030 kg Your answer...

  • Plaskett's binary system consists of two stars that revolve in a circular orbit about a center...

    Plaskett's binary system consists of two stars that revolve in a circular orbit about a center of mass midway between them. This statement implies that the masses of the two stars are equal (see figure below). Assume the orbital speed of each star is |v vector| = 170 km/s and the orbital period of each is 14.5 days. Find the mass M of each star. (For comparison, the mass of our Sun is 1.99 times 10^30 kg.) 1.02e-9 If you...

  • Plaskett's binary system consists of two stars that revolve in circular orbits around a fixed point...

    Plaskett's binary system consists of two stars that revolve in circular orbits around a fixed point half-way between them. This means that the masses of the two stars are equal (see the figure below). --- M If the orbital velocity of each star is v= 188 km/s and the orbital period of each is 11.7 days, calculate the mass Mof each star. (For comparison, the mass of our Sun is 1.99x1030 kg.)

  • In recent years, scientists have discovered hundreds of planets orbiting other stars. Some of these planets...

    In recent years, scientists have discovered hundreds of planets orbiting other stars. Some of these planets are in orbits that are similar to that of earth, which orbits the sun (Msun = 1.99 × 1030 kg) at a distance of 1.50 × 1011 m, called 1 astronomical unit (1 au). Others have extreme orbits that are much different from anything in our solar system. The following problem relates to one of these planets that follows circular orbit around its star....

  • Now M is the sum of the two masses in units of the solar mass .e. the mass of our Sun), while a i...

    Now M is the sum of the two masses in units of the solar mass .e. the mass of our Sun), while a is still in AU and P in years. An important application of Newton's generalization of Kepler's third law is being able to dete mine mass of a central body based on the motion of a satellite around that body. If the satellite is much less massive than the body it's orbiting, then M is essentially equal to...

  • For the following, quote your numerical answers to two significant figures: a) A binary system consists...

    For the following, quote your numerical answers to two significant figures: a) A binary system consists of two stars orbiting a common center of mass. Star A is a white star of mass MA = 2.02Mo, where Mo = 1.989 x 1030 kg is the mass of the Sun. Its companion, Star B, is a white dwarf with mass Mg = 0.978M. The orbital period of the two objects is observed to be t = 50.09 years. What is the...

  • 8. [5pt] Stars in the outskirts of a globular cluser are about 46 light years from...

    8. [5pt] Stars in the outskirts of a globular cluser are about 46 light years from the cluster's center, and at speeds of about 12 km/s. How massive is this cluster? (answer in solar masses) Answer: Submit All Answers 9. [5pt] A star in the Milky Way that is about 30 percent of the way out from the center of the galaxy has an orbital distance of 15 thousand light years and an orbital velocity of 222 km/s. What is...

  • In Lecture 4, we discussed Kepler’s third law relatingthe orbital period of a planet (p) to...

    In Lecture 4, we discussed Kepler’s third law relatingthe orbital period of a planet (p) to the semi-major axis (orbital distance, a) of its orbit(p2= a3). We can apply this law as long the object orbits the Sun or another object of the same mass, and the units of orbital period are in (Earth) years and the orbital distance is in Astronomical Units(AU). [1AU is equal to the distance between the Earth and the Sun]. [Note: Newton extended this law...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT