Question

10. + 0/1 points Previous Answers OSUniPhys1 15.6.WA.048. My Notes vion of the spring-mass system A spring with k = 220 N/m h

0 0
Add a comment Improve this question Transcribed image text
Answer #1

I Solution Given, Spring constant, K= 220 N/m - Mass, m = 4.25 kg External force, F: 825 N Amplitude of oscillation, 2. = 3.8Frequency , f = 1.145 Hz

Add a comment
Know the answer?
Add Answer to:
10. + 0/1 points Previous Answers OSUniPhys1 15.6.WA.048. My Notes vion of the spring-mass system A...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A spring with k = 245 N/m has a mass of m = 4.35 kg attached...

    A spring with k = 245 N/m has a mass of m = 4.35 kg attached to it. An external force F whose maximum value is 825 N drives the spring mass system so that it oscillates without any resistive forces. If the amplitude of the oscillatory motion of the spring-mass system is 3.65 cm, find the frequency of the external force that drives this motion. Hz

  • 8. + 0.5/1 points Previous Answers OSUniPhys1 15.5.WA.046. My Note A vertical spring-mass system undergoes damped oscil...

    8. + 0.5/1 points Previous Answers OSUniPhys1 15.5.WA.046. My Note A vertical spring-mass system undergoes damped oscillations due to air resistance. The spring constant is 2.50 x 10 N/m and the mass at the end of the spring is 15.0 kg. (a) If the damping coefficient is b = 4.50 N. s/m, what is the frequency of the oscillator? 6.498 ✓ Hz (b) Determine the fractional decrease in the amplitude of the oscillation after 7 cycles. 316 x What is...

  • 5. + 0/1 points Previous Answers OSUniPhys1 15.2.WA.029. My Notes You attach one end of a...

    5. + 0/1 points Previous Answers OSUniPhys1 15.2.WA.029. My Notes You attach one end of a spring with a force constant k = 893 N/m to a wall and the other end to a mass m = 2.22 kg and set the mass-spring system into oscillation on a horizontal frictionless surface as shown in the figure. To put the system into oscillation, you pull the block to a position x; = 6.76 cm from equilibrium and release it. x =...

  • 13. A damped mass-spring system with mass m, spring constant k, and damping constant b is...

    13. A damped mass-spring system with mass m, spring constant k, and damping constant b is driven by an external force with frequency w and amplitude Fo. 2662 where, wo is the (a) Show that the maximum oscillation amplitude occurs when w = natural frequency of the system. where, wd is the (b) Show that the maximum oscillation amplitude at that frequency is A = frequency of the undriven, damped system.

  • w points previous Answers OSUniPhys1 15.2 WA.028. в му An object with a mass m 49.6...

    w points previous Answers OSUniPhys1 15.2 WA.028. в му An object with a mass m 49.6 g is attached to a spring with a force constant k = 14,3 N/m and released from rest when the spring is stretched 37.2 cm. If it is oscillating on a horizontal frictionless surface, determine the velocity of the mass when it is halfway to the equilibrium position. Is energy conserved for this mass spring oscillating system? m/s Additional Materials ock

  • 1.5/2 points 1 Previous Answers OSUniPhys1 15.1.WA.001.Tutornal You have a two-wheel trailer that you pull behind...

    1.5/2 points 1 Previous Answers OSUniPhys1 15.1.WA.001.Tutornal You have a two-wheel trailer that you pull behind your ATV. Two children with a combined mass of 64.7 kg hop on board for a ride through the woods and the springs (one for each wheel) each compress by 5.17 cm. When you pull the trailer over a tree root in the trail, it oscillates with a period of 1.14s. Determine the following. My Note s Ask Your Te (a) force constant of...

  • 6. A mass of 2 kilogram is attached to a spring whose constant is 4 N/m, and the entire system is...

    6. A mass of 2 kilogram is attached to a spring whose constant is 4 N/m, and the entire system is then submerged in a liquid that inparts a damping force equal to 4 tines the instantansous velocity. At t = 0 the mass is released from the equilibrium position with no initial velocity. An external force t)4t-3) is applied. (a) Write (t), the external force, as a piecewise function and sketch its graph b) Write the initial-value problem (c)Solve...

  • Exercises 1. (introduction) Sketch or plot the displacement of the mass in a mass-spring system for at least two per...

    Exercises 1. (introduction) Sketch or plot the displacement of the mass in a mass-spring system for at least two periods for the case when Wn-2rad/s, 괴,-1mm, and eto =-v/5mm/s. 2. (introduction) The approximation sin θ ะ θ is reasonable for θ < 10°. If a pendulum of length 0.5m, has an initial position of 0()0, what is the maximum value of the initial angular velocity that can be given to the pendulum without violating this smll angle approximation? 3. (harmonic...

  • 1. A 1 kg mass is attached to a spring of spring constant k = 4kg/82, The spring-mass system is a...

    Differntial Equations Forced Spring Motion 1. A 1 kg mass is attached to a spring of spring constant k = 4kg/82, The spring-mass system is attached to a machine that supplies an external driving force of f(t) = 4 cos(wt). The systern is started from equilibrium i.e. 2(0) = 0 and z'(0) = 0. There is no damping. (a) Find the position x(t) of the mass as a function of time (b) write your answer in the form r(t)-1 sin(6t)...

  • Can I get help with this 2. (20 points) The damped single degree-of-freedom mass-spring system shown...

    Can I get help with this 2. (20 points) The damped single degree-of-freedom mass-spring system shown below has a mass m- 20 kg and a spring stiffness coefficient k 2400 N/m. a) Determine the damping coefficient of the system, if it is given that the mass exhibits a response with an amplitude of 0.02 m when the support is harmonically excited at the natural frequency of the system with an amplitude Yo-0.007 m b) Determine the amplitude of the dynamic...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT