Question

aluminum has a specific heat of 0.910 j/gc if 15.2 g of al are heated to...

aluminum has a specific heat of 0.910 j/gc if 15.2 g of al are heated to a temperature of 99.5 c and then immersed in 50.0 g of water what is the final temperature of the water the water is initially at 25 c
0 0
Add a comment Improve this question Transcribed image text
Answer #1

heat lost by Al + heat gain by coate (ms AT) HO CmsaTA (IS.29xa91T-99.5)) J - 25)) =o +(sogx u1 on solving, T = 24.6

Add a comment
Know the answer?
Add Answer to:
aluminum has a specific heat of 0.910 j/gc if 15.2 g of al are heated to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Copper has a specific heat of .390 j/gc. if 15.1 g of cu is heated to...

    Copper has a specific heat of .390 j/gc. if 15.1 g of cu is heated to a tenoerature of 99.0 c and immersed in water. the resulting temperature of the cu was then 35.0. how much heat in j was transferred (added) to the water assume all heat us transferred to the water

  • A 17.0 g piece of aluminum (which has a molar heat capacity of 24.03 J/°C·mol) is...

    A 17.0 g piece of aluminum (which has a molar heat capacity of 24.03 J/°C·mol) is heated to 82.4°C and dropped into a calorimeter containing water (specific heat capacity of water is 4.18 J/g°C) initially at 22.3°C. The final temperature of the water is 25.3°C. Ignoring significant figures, calculate the mass of water in the calorimeter.

  • Practice With Calorimetry And Heat 1. 75.0 g of cast iron was heated to 100°C and...

    Practice With Calorimetry And Heat 1. 75.0 g of cast iron was heated to 100°C and then plunged into 100 g of water at 23.0°C. Calculate the final temperature. Cast iron has specific heat of 0.46 J/gºc 2. A 25.0 g sample of an unknown metal at 99.5°C is placed into a calorimeter holding 50.0 g of water at 22.3°C. The final temperature was 26.2°C; what was the specific heat of the metal? 3. 30.0 g of water at 7.00°C...

  • A 92.5 g piece of aluminum (which has a molar heat capacity of 24.03]/°C-mol) is heated...

    A 92.5 g piece of aluminum (which has a molar heat capacity of 24.03]/°C-mol) is heated to 624°C and dropped into a calorimeter containing water (specific heat capacity of water is 4.18 J/g°C) initially at 19.2°C. The final temperature of the water is 135.2°C. Ignoring significant figures, calculate the mass of water in the calorimeter.

  • A 3.00-g sample of aluminum pellets (specific heat capacity=0.89 J/°C g) and a 18.50-g sample of...

    A 3.00-g sample of aluminum pellets (specific heat capacity=0.89 J/°C g) and a 18.50-g sample of iron pellets (specific heat capacity = 0.45 J/°C-g) are heated to 100.0 °C. The mixture of hot iron and aluminum is then dropped into 77.4 g water at 22.0 °C. Calculate the final temperature of the metal and water mixture, assuming no heat loss to the surroundings. Final temperature = 20.23 °C An error has been detected in your answer. Check for typos. miscalculations...

  • b. A 92.5 g piece of aluminum (which has a molar heat capacity of 24.03 J/°C-mol)...

    b. A 92.5 g piece of aluminum (which has a molar heat capacity of 24.03 J/°C-mol) is heated to 621 and dropped into a calorimeter containing water (specific heat capacity of water is 1.10 MB initially at 19.2°C. The final temperature of the water is 135.2°C. Ignoring significant figures, calculate the mass of water in the calorimeter.

  • A 130.0 g piece of copper (specific heat 0.38 J/g・°C) is heated and then placed into...

    A 130.0 g piece of copper (specific heat 0.38 J/g・°C) is heated and then placed into 400.0 g of water initially at 20.7°C. The water increases in temperature to 22.2°C. What is the initial temperature of the copper? (The specific heat of water is 4.18 J/g・°C and the density of water is 1.00 g/mL).

  • A 3.00-g sample of aluminum pellets (specific heat capacity = 0.89 J/°C·g) and a 11.00-g sample...

    A 3.00-g sample of aluminum pellets (specific heat capacity = 0.89 J/°C·g) and a 11.00-g sample of iron pellets (specific heat capacity = 0.45 J/°C·g) are heated to 100.0 °C. The mixture of hot iron and aluminum is then dropped into 73.8 g water at 22.0 °C. Calculate the final temperature of the metal and water mixture, assuming no heat loss to the surroundings. Please be super specific on how you get to each step!

  • Practice With Calorimetry And Heat 1. 75.0 g of cast iron was heated to 100°C and...

    Practice With Calorimetry And Heat 1. 75.0 g of cast iron was heated to 100°C and then plunged into 100 g of water. 23.0°C. Calculate the final temperature. Cast iron has specific heat of 0.46 19 2. A 25.0 g sample of an unknown metal at 99.5°C is placed into a calorimeter holding 50.0 g of water at 22.3°C. The final temperature was 26.2°C; what was the specific heat of the metal?

  • Question 10 of 20 A 141.9 g piece of copper (specific heat 0.38 J/g.°C) is heated...

    Question 10 of 20 A 141.9 g piece of copper (specific heat 0.38 J/g.°C) is heated and then placed into 400.0 g of water initially at 20.7°C. The water increases in temperature to 22.2°C. What is the initial temperature of the copper? (The specific heat of water is 4.18 J/g °C).

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT