Question

A 17.0 g piece of aluminum (which has a molar heat capacity of 24.03 J/°C·mol) is...

A 17.0 g piece of aluminum (which has a molar heat capacity of 24.03 J/°C·mol) is heated to 82.4°C and dropped into a calorimeter containing water (specific heat capacity of water is 4.18 J/g°C) initially at 22.3°C. The final temperature of the water is 25.3°C. Ignoring significant figures, calculate the mass of water in the calorimeter.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

heat lost by Al = heat gained by water

qAl = qwater

mC(\DeltaT) = mC(\DeltaT)

CAl = 24.03 J/0C . mol = 0.89 J/0C g

17.0 x 0.89 (82.4 - 25.3) = m x 4.18 x (25.3 - 22.3)

863.923 = 12.54 m

m = 68.90 g

mass of water = 68.90 g

Add a comment
Know the answer?
Add Answer to:
A 17.0 g piece of aluminum (which has a molar heat capacity of 24.03 J/°C·mol) is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 92.5 g piece of aluminum (which has a molar heat capacity of 24.03]/°C-mol) is heated...

    A 92.5 g piece of aluminum (which has a molar heat capacity of 24.03]/°C-mol) is heated to 624°C and dropped into a calorimeter containing water (specific heat capacity of water is 4.18 J/g°C) initially at 19.2°C. The final temperature of the water is 135.2°C. Ignoring significant figures, calculate the mass of water in the calorimeter.

  • b. A 92.5 g piece of aluminum (which has a molar heat capacity of 24.03 J/°C-mol)...

    b. A 92.5 g piece of aluminum (which has a molar heat capacity of 24.03 J/°C-mol) is heated to 621 and dropped into a calorimeter containing water (specific heat capacity of water is 1.10 MB initially at 19.2°C. The final temperature of the water is 135.2°C. Ignoring significant figures, calculate the mass of water in the calorimeter.

  • both questions please 6. A 89.2 g piece of aluminum (which has a molar heat capacity of 24.031/°C-mol) is heated to...

    both questions please 6. A 89.2 g piece of aluminum (which has a molar heat capacity of 24.031/°C-mol) is heated to 624°C and dropped into a calorimeter containing water (specific heat capacity of water is 4.18J/gºC) initially at 19.2°C. The final temperature of the water is 135.2°C. Ignoring significant figures, calculate the mass of water in the calorimeter. 7. A single pulse of a laser yields an average of 5.00 x 101 photons with = 633 nm. If melting ice...

  • A 29.3 g piece of metal is heated to 97 degree C and dropped into a...

    A 29.3 g piece of metal is heated to 97 degree C and dropped into a calorimeter containing 50.0 g of water (specific heat capacity of water is 4.18 J/g degree C) initially at 22.9 degree C. The empty calorimeter has a heat capacity of 125 J/K. the final temperature of the water is 25.96 degree C. Ignoring significant figures., calculate the specific heat of the metal. A) 0.481 J/gK. B) 0.361 J/gK C) 0.120 J/gK D) 0.300 J/gK E)...

  • A 21.0 g sample of aluminum, which has a specific heat capacity of 0.897 J g...

    A 21.0 g sample of aluminum, which has a specific heat capacity of 0.897 J g '°C ', is dropped into an insulated container containing 200.0 g of water at 25.0 °C and a constant pressure of 1 atm. The initial temperature of the aluminum is 90.1 °C Assuming no heat is absorbed from or by the container, or the surroundings, calculate the equilibrium temperature of the water. Be sure your answer has 3 significant digits. x10 ? X

  • Calculate the molar heat capacity of iron, A 45.61g piece of iron heated to 96.32˚C is...

    Calculate the molar heat capacity of iron, A 45.61g piece of iron heated to 96.32˚C is transferred to a calorimeter containing 80.00g water initially at 24.91˚C. The temperature of the system at thermal equilibrium is 28.04˚C.

  • A 60.80 gram sample of iron (with a heat capacity of 0.450 J/g◦C) is heated to...

    A 60.80 gram sample of iron (with a heat capacity of 0.450 J/g◦C) is heated to 100.00 ◦ It is then transferred to a coffee cup calorimeter containing 52.42 g of water (specific heat of 4.184 J/ g◦C) initially at 20.47 ◦C. If the final temperature of the system is 28.78, what was the heat gained by the calorimeter? If the calorimeter had a mass of 25.19 g, what is the heat capacity of the calorimeter?

  • A piece of copper metal is initially at 83.0°C. It is dropped into a coffee cup...

    A piece of copper metal is initially at 83.0°C. It is dropped into a coffee cup calorimeter containing 30.0 9 of water at a temperature of 10.0°c. After stirring, the final temperature of both copper and water is 25.0°c. Assuming no heat losses, and that the specific heat (capacity) of water is 4.18 J/(g.), what is the heat capacity of the copper in J/K?

  • A 61.18 gram sample of iron (with a heat capacity of 0.450 J/g℃) is heated to...

    A 61.18 gram sample of iron (with a heat capacity of 0.450 J/g℃) is heated to 100.00。It is then transferred to a coffee cup calorimeter containing 52.33 g of water (specific heat of 4.184 J/ g℃) initially at 20.67 ℃. If the final temperature of the system is 28.40, what was the heat gained by the calorimeter? If the calorimeter had a mass of 27.88 g, what is the heat capacity of the calorimeter? J absorbed by the calorimeter

  • A 110. g sample of copper (specific heat capacity= 0.20 J/g C) is heated to 82.4...

    A 110. g sample of copper (specific heat capacity= 0.20 J/g C) is heated to 82.4 C and then placed in a container of water at 22.3 C. The final temperature of the water and copper is 24.9 C. What is the mass of the water in the container, assuming that all the heat lost by the copper is gained by the water?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT