Question

Two identical strings, of identical lengths of 2.00 m and linear mass density of H 0.0065 kg/m,are fixed on both ends. String A is under a tension of 120.00 N. String B is under a tension of 130.00 N. They are each plucked and produce sound at the n-10 mode. What is the beat frequency? Select the correct answer O 10 Hz Your Answer Hz O 20 Hz O 5 Hz O 15 Hz

0 0
Add a comment Improve this question Transcribed image text
Answer #1

answer)

we know the formula

f=nv/2l

n=10

l=2m

v=\sqrt{}T/u

so for f1

v=\sqrt{}120/.0065=136m/s

so using eqn 1

f1=10*1360/4=340Hz

for f2

v=\sqrt{}130/0.0065=141Hz

f2=10*141.42/4=354Hz

beat frequncy=f2-f1=354-340=14Hz

so the correct option is 15Hz. ( since its closer 14Hz)

Add a comment
Know the answer?
Add Answer to:
Two identical strings, of identical lengths of 2.00 m and linear mass density of H 0.0065...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two identical guitar strings are prepared such that they have the same length (2.30 m) and...

    Two identical guitar strings are prepared such that they have the same length (2.30 m) and are under the same amount of tension. The first string is plucked at one location, primarily exciting the 5th harmonic. The other string is plucked in a different location, primarily exciting the 4th harmonic. The resulting sounds give rise to a beat frequency of 378 Hz. What is the wave propagation speed on the guitar strings?

  • Two identical guitar strings are prepared such that they have the same length ( 0.65 m...

    Two identical guitar strings are prepared such that they have the same length ( 0.65 m ) and are under the same amount of tension. The first string is plucked at one location, primarily exciting the second harmonic. The other string is plucked in a different location, primarily exciting the third harmonic. The resulting sounds give rise to a beat frequency of 378 Hz . What is the wave propagation speed on the guitar strings?

  • Two identical guitar strings are prepared such that they have the same length (0.67 m) and...

    Two identical guitar strings are prepared such that they have the same length (0.67 m) and are under the same amount of tension. The first string is plucked at one location, primarily exciting the fifth harmonic. The other string is plucked in a different location, primarily exciting the fourth harmonic. The resulting sounds give rise to a beat frequency of 3.60 x 102 Hz What is the wave propagation speed on the guitar strings? m/s 241.2 wave propagation speed:

  • Two identical guitar strings are prepared such that they have the same length (0.65 m0.65 m)...

    Two identical guitar strings are prepared such that they have the same length (0.65 m0.65 m) and are under the same amount of tension. The first string is plucked at one location, primarily exciting the first harmonic. The other string is plucked in a different location, primarily exciting the fourth harmonic. The resulting sounds give rise to a beat frequency of 378 Hz378 Hz. What is the wave propagation speed on the guitar strings? wave propagation speed: m/s

  • A nylon guitar string is fixed between two lab posts 2.00 m apart. The string has...

    A nylon guitar string is fixed between two lab posts 2.00 m apart. The string has a linear mass density of μ-7.20 g/m and is placed under a tension of 160.00 N. The string is placed next to a tube, open at both ends, of length L. The string is plucked and the tube resonates at the n-1 mode. The speed of sound is 343 m/s. What is the length of the tube? Select the correct answer O 2.3 m...

  • A string with a linear mass density of 2.00 gm/m is stretched with a force of...

    A string with a linear mass density of 2.00 gm/m is stretched with a force of 150 N between two points that are 0.500 m apart. The frequency of the second mode of the stretched string is in tune with the fundamental frequency of an organ pipe filled with air and open at both ends. The velocity of sound in air at 0°C is 331 m/s. What is the length of the organ pipe? Answer choices are in cm thank...

  • Example 18.7 The Mistuned Piano Strings Two identical piano strings of length 0.775 m are each tuned exactly to 400 Hz....

    Example 18.7 The Mistuned Piano Strings Two identical piano strings of length 0.775 m are each tuned exactly to 400 Hz. The tension in one of the strings is then increased by 1.0%. If they are now struck, what is the beat frequency between the fundamentals of the two strings? SOLVE IT Conceptualize As the tension in one of the strings is changed, its fundamental frequency changes. Therefore, when both strings are played, they will have different frequencies and beats...

  • 5. 0r1.5 polnts | 1 17.4.P.085 n two lab posts 2.75 m apart. The string has...

    5. 0r1.5 polnts | 1 17.4.P.085 n two lab posts 2.75 m apart. The string has a linear mass density of p- 8.20 g/m and is placed under a tension of 170.00 N. A nylon guitar string is fixed The string is placed next to a tube, open at both ends, of length L. The string is plucked and the tube resonates at the n 2 mode. The speed of sound is 343 m/s. What is the length of the...

  • A simple instrument consists of two metal strings stretched parallel to one another and attached at...

    A simple instrument consists of two metal strings stretched parallel to one another and attached at both ends to boards perpendicular to the strings. The tension is the same in both strings, and the length of the strings is ` = 35.0 cm. The first string has a mass m = 8.00 g and generates middle C (frequency f = 262 Hz) when vibrating in its fundamental mode. a) What is the tension in the first string? b) If the...

  • A string with a linear mass density of 0.0080 kg/m and a length of 6.40 m...

    A string with a linear mass density of 0.0080 kg/m and a length of 6.40 m is set into the n = 4 mode of resonance by driving with a frequency of 110.00 Hz. What is the tension in the string (in N)?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT