Question

Question 3 Two universal columns of size 203 x 203 x 60 kg/m and a steel beam are used to support a uniformly distributed load of 2 KN/m and two concentrated loads as shown in Fig. Q.3a. Determine the maximum load, P, that can be applied onto the beam using the Euler buckling theory assuming that the beam is of sufficient strength. The self-weight of the beam and the columns are ignored. You may assume that the steel beam is simply supported by the columns and the top of the column is not allowed to move in both the in-plane and the out-of-plane directions. 

Question 3 Two universal columns of size 203 x 203 x 60 kg/m and a steel beam are used to support a uniformly distributed load of 2 KN/m and two concentrated loads as shown in Fig. Q.3a. Determine the maximum load, P, that can be applied onto the beam using the Euler buckling theory assuming that the beam is of sufficient strength. The self-weight of the beam and the columns are ignored. You may assume that the steel beam is simply supported by the columns and the top of the column is not allowed to move in both the in-plane and the out-of-plane directions. (a) (30%) 5 m 2 KN/m 2P 2 m 6 m Moment of inertia of the columns: I, 61 04 x 10 mm I, 20 47 x 10 mm E 205 x 1o MPa Fig. 0.3a

Table 8.8(e)- Design strength p, of compression members 5) Values of p. in Nimm with2110 for strut curve c Steel grade and design stren th pr (N/mm $460 410 430 355 1 235 245 255 265 275 315 325 335 345 355 398 408 4274384 20 | 233 | 242 | 252 | 261 | 271 308 | 317 326 | 336 | 345 387 396 414 424 25 226235 245 254 263 299 308 317 326 335 375 384 402 4102 30 220 228 237 246 5 89 298 307 315 324363 371 388396 41 35 213221 230 238 247 200 288 296 305 313 349 357 374 382 39 40 206 214 222 230 238 270 278 285 293 301 335 343 358 365 380 42 203 | 211 | 219 | 227 | 235 266 | 273 | 281 288 | 296 32 33 351 358 373 44 200 208 216 224 231 261 269 276 284 291 323330 344 351 365 46 197 | 205 | 213 | 220 | 228 | 257 | 264 271 | 279 | 286 317 324 | 337 344 3 48 | 195 | 202 | 209 | 217 | 224 253 | 260 | 267 | 274 | 280 | 311 | 317 | 330 | 337 | 50 192 199 206 213 220 248 255262 268 275 304 310 323 329 341 52 | 189 | 196 | 203 | 210 | 217 244 250 | 257 | 263 270 |297 | 303 315 321 333 54 186 193 199 206 213 239 245 252 258 264 291 296 308 313 324 56 | 183 | 189 | 196 | 202 | 209 234 | 240 |246 | 252 258 284 289 | 30 305 315 58 179 186 192199 205 229 235 241 247 252 277 282 292 297 306 60 176 183 189 195 201225 230 236 241 247 270 274 284 289 298 62 173179 185 191 197 220 225 230 236 241 262 267 276 280 289 64 170 176 182 188 193 215 220 225 230 235 255 260 268 272 280 66 167 173 | 178 | 184 | 189 210 | 215 220 | 224 | 229 248 252 | 260 264 271 68 164 169 175 180 185 205 210 214 219 223 241 245 252 256 262 70 161 166 171 176 181200 204 209 213 217 234238 244 248 254 72 157 | 163 | 168 | 172 | 177 195 | 199 | 203 | 207 | 211 227 | 231 | 237 240 | 246 74 154159 164 169 173 190 194 198 202 205 220 223 229 232 238 76 151156 160 165 169 185 189 193 196 200 214 217 222 225 230 78 148 152 157 161 165 180 184 187191 194 207 210 215 217 222 80 145 149 153 157 161 176 179 182 185 188 201 203 208 210 215 82 142 146 150154 157 171 174 177 180 183 195 197 201 203 207 84 139 142 146 150 154 167 169 172 175 178 189 191 195 197 201 86 135 139 143 146 150 162 165 168 170 173 183 185 189 190 194 32 136 139 143 146 158 160 163 165 168 177 179 183 184 187 90 129 133 136 139 142 92 126 130 133136 139 149 152 154 1 94 124 127 130 133 135 145 147 149 151 153 161 163 153 156 158 161 163 172 173 177 178 181 156 158 166 168 171 173175 166 167 170 1 162164 96 121 124 | 127 | 129 | 132 141 | 143 | 145 | 147 | 149 156 | 158 160 162 1104 98 118 121 123 126 129 137 139 141 143 145 151 153 155 157 159 100 115 118 120 123 125 134 135 137 139 140 147 148 151 152 102 113 115 118 120 122 130 132 133 135 136 143 144 146 147 104 | 110 | 112 | 115 | 117 | 11 126 | 128 | 130 | 131 | 133 | 198 | 139 | 142 | 142 | 144 106 107 110 112 114 116 123 125 126 127 129 134 135 137 138 140 Note: For other steel grades, refer to Appendix 8.4

Table 8.8(e) Design strength p, of compression members (contd 6) Valueso with à 2 110 for strut curve Steel grade and design s S275 101 102 104 106 108 [110|116 | 118 | 119 | 120 122 126 | 127 112 100 102 104 106 107 113 115 116 117 118 123 124 125 126 128 114 98 100 101 103 105 110 112 113114 115 119 120 122 123 124 118 93 95 9798 100 105 106 107 108 09 113 114 115 16117 120 91 93 94 96 97 102 103 104 105 106 110 110 112 112 113 1221 89 90 | 92 | 93 | 95 99 | 100 | 101 | 102 | 103 | 107 | 107 | 100 | 109 | 110 124 878890 91 929899 100 100 104 104 106 106107 126|85 | 86 |63 | 89 | 90 94 |95 | 96 | 97 | 98 101 | 102 | 103 | 103 | 104 128 83 84 86 87 88 92 93 94 9 95 98 9 100 100 101 130 81 82 84 85 86 90 91 91 9293 96 96 979 99 135|77 | 78 | 79 | 80 | 81 84 85 86 | 87 | 87 90 90 91 | 92 |92 140 72 74 75 76 76 7981 81 82 84 85 85 86 87 145|69 | 70 | 71 | 71 | 72 75 | 76 | 76 |77 | 77 | 79 |80 | 80 |61 |81 150 65 66 67 8 68 7171 72 72 73 75 76 76 76 76 155 | 62 |63 |63 |64 |65 67 |67 |68 |68 |69 |70 71 |71 172 172 160 59 59 60 61 61 636 64 65 6566 67 67 768 165 56 56 5758 58 6060 61 61 6163 63 64 64 64 170 | 53 |54 |54 |55 |55 57 |57 |58 |58 |58 60 160 160 160 161 175 51 5 52 52 53 4 54 555 56 57 57 7 58 180 48 4949 50 50 51 52 2 54 54 54 54 55 185|46 | 46 | 47 | 47 | 48 49 | 49 | 50 | 50 | 50 51 | 51 | 52 52 | 52 190|44 | 44 | 45 | 45 | 45 47 | 47 | 47 | 47 | 48 |49 | 49 | 49 | 49 49 195| 42 | 42 | 43 | 43 | 43 45 | 45 | 45 | 45 | 45 46 | 46 | 47 47 47 200140 141 141 | 41 | 42 43 | 43 | 43 | 43 | 43 | 44 | 44 | 45 | 45 | 45 210 37 373 38 38 39 39 39 4040 40 4041 41 41 220 34 34 3535 35 36 36 36 36 3637 37 37 37 38 230 31 32 3232 32 33 33 33 33 34 34 34 34 3435 240 29 29 30 30 3030 31 31 31 31 31 31 32 32 32 250 27 27 27 28 2828 28 829 29 29 29 29 29 29 260 | 25 |25 |26 |26 |26 |26 |26 |26 |27 |27 |27 |27 |27 |27 |27 270123 | 24 |24 | 24 | 24 |24 |25 | 25 | 25 | 25 25 | 25 | 25 | 25 | 25 280 | 22 |22 |22 |22 |22 23 |23 |23 |23 |23 |23 |24 |24 |24 |24 290 21 21 2121 21 21 21 22 22 22 22 2222 22 22 300 19 19 20 20 20 20 20 20 20 20 21 21 21 21 21 310 18 18 18 19 19 19 19 1919 1919 19 19 19 20 320|17 | 17 | 17 | 17 | 18 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 330|16 | 16 | 16 | 16 | 17 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 340|15 | 15 | 15 | 16 | 16 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 350 15 15 15 15 15 15 1515 1515 15 15 15 15 15 Note: For other steel grades, refer to Appendix 8.4

UNIVERSAL COLUMNS DIMENSIONS Dimansions Forung Surface Ares Noseh Ratos For Sorial Mass Saction Section fOfhsRoc Depth Radius Betoen Local Buckling 84 2.43 449 551 455.7 418.5 42.0 67.5152 22 3.10 691 457 4366 4124 5.9 58.052 2.3.56 808 334191 4070 30.649.2 15.2 20.3 41 9.49 340 406,4 03.0 26.5 42.9 230.24.70 11.0 200 74 2.42 5.1 ) | 60 | 2.35 | .0 52 | 2.31 8.06 2 31.03.0 18.5 302 12 2 6.5415.7 hacoRE| 477 | 427.0 | 44.4 | 4a.0丨532 |15.2 | 20.2 | 3.99 | 26 1200 | 70 |14 35GOS | 202 | 374.7 | 374.4 | 16.8 丨 27.0 | ts2 | .3 Isso 117.3 153 362.0 370.212.6 20.7 152 20.28230 129 | 355.8 | ว68.3 | 10.7 | 17.5 | 15.2 | 200.2 | 10.5127,, osas | 253 | 306.3 | 꾜1.8 | 26.9 | 44.1 | t5.2 | 245.7 | 3.65 | 9.17 |190|441219 10.8 190 40 2.1712.3 36 2.15 14.1 19034 2.14 16.6 339.9 | 314.1 19.2 31.4 | 15.2 | 245.7 | 5.0 12.8 58 227.2 310.6 15.7 25.0 | 15.2 | 246.8 | 621 | 15.7 137 320.5 38.7 13.8 21.7 | 15.2 | 246.7 | 7.11 173 118 314.5 306.8 119 18.7 .2 246.7 820 20.7 158 60 1946.85 158| 54 1.90 7.94 158 4187 9.45 158 42 84 6 158 38182 13.3 158 3415.3 97 307.30489.9154 12 24.6 90249 25as67 2091 25 19.2 31.712. 200.3 417 04 158 32 1.79 18.4 107 256. 258.3 13.0 20.512. 200360 15.4 8 2604 255.9 10.5 17.3 12200 7.40 19.1 134 1.58 .44 354 11.7 134 341.52 14.2 | 30 1.50 16.9 108 32 1.24 44 108 281.22 17.2 108 26 1.20 20.1 108 24119 23.0 108 22 1.19 8 71 215.9 206.2 10.317.310.2 160.9 5.96 15. 60 209.6 205.2 9.3 14.2 10.2 160.8 7.23 17.3 52 206.2 203.9 8.0 12.5 10.2 1608 8,16 2 7.3 | 11.0 | ร0.2 | 160.81 9.24 122.0 152x15231618 1544 81115 7.6123.6 6.71 163 7.6 123.5 8.13 18.7 23 152.4 12.4 6.1 6876 123.6 112 20.3 20 0912 24.6 8 0.900 30.0 84 16 0.89 38.7 30157.5 152.9 6.694 FOR EXPLANATION OF TABLES SEE NOTE 2 Page 20 of 21 ON- -200 200 200 200 200 200 200 200 130 130 130 130 198 58 isa isa isa isa rsa 194 104 34 34 34 100 : 84 84 655 End mm 26 23 20 17 1S 13 11 10 9 8 7 15 14 12 10 987 12 10 9 7 6 97766 26 250 200 201 201 19 8.

UNIVERSAL COLUMNS PROPERTIES EasseModulus Designasion Second MomensRadius Of Area Pastie Bucking Torson Warping Torional Area Of Gyration Modolut Paramecer Index Constent Coestant Serigl Mass Section 35Gu406| 604 27500|96190| 18.5 | 11.0 111500| 4631|14240| 7112 | 0.543 | SAO 9232 702 861 220000 820 18 10.9 31 1208067Q8 333 4620 65370 17.15 7001 2721 822 4154 235 | 79150| 31040 | 162 | 102 | 4155|1572| 4 01 | 31,1 2.3 5817 183100 730.8 3236 10010 5040 0.833 6.86 189 3545 501 15.5 2340 433 366 7.8 93830 39680 10.3 9 5814 2943 0.83 12.3 1441 9弱| 813 | 30 Co 47 172500 680061068078 3209 904023 5706 807 | 034 | 12.1 3202 632306.0 573541 122 19170.413.4 7.142 177 57110 |20450 15.9 9.52 3101| 1000 | 3455 | 1667 | 0.844 15.0 13 4640 17510 15.8 9.46 20872433 084417 in 0 510 252196 6.0 240 64150 |20220| 14.5 | 8.14 | 309| 1272 4243 | 1945 0.054 8.74.1 5.0t 1270 期 98 5000 1624014.2 8.02 3 10 3438 157 04 10.23735252 f58 38000 125 01 t3.9 | 7.89 2965 | 06 | 257ธ | 1225 | 0鳳 12.5 2.86 丨扔 201 | 0 | 22S3 | 1049 | 0351 14.2 2.30 249 174 123 2502541 167 29920 9292 11.9 | 6.79 |200 | 140 2418 | 1t31 0.052 8.49 1.62 62S 212 137 |32770|10660| 13.7 | 7.82 1245 97 22200| 7272 | 124 | 7.68 | 140| 477 | 15e9 | 724 | 0K 19.3 1.55 91.1 122 2560 7506 11.6 6.67 16321 s s 1872 |叨 0350 10.3 1.18 321 160 107 17500 5834 113.57 1312 46 14843 0848 1240.833173 137 关 |4230| 4835 11.2 | 652 1087| 378 1225 | 574 | 0B49 | 14.5 0.714 | 103 114 73 | 11370| 3880 | 11.1 | 6.46 | 895 |36 | | 463 | 0.849 | 17.3 0.568 | 07.5 | 32.9 1 7634 2530 9.16 5.29 707 245 801 3730.852119 0.249 810 9 60 6103 | 2047 8.96 | 5.19 | 582 | 199 | 664 | 30 | 0847 | 141 0.195 46.9 | 76.0- 52 5254 17678.90516 510 1737 263 0.84 15.8 0.166 31.9 46 485.12 449 51 47 30 0.8 17.70.14222.2 8.8 152x1523 2213 06 64 3.87 274 91.5 3040.848 13.30.0339 19.3 73 30 1748 0 6.75 3.82 273.3 243 112084816.0 0.0307 10.638.4 23125840 651 3.68165 27 184 80.5 0.837 2050.0213 482 . FOR EXPLANATION OF TABLES SEE NOTE 3

STRUCTURAL STEEL P,-275 N/mm2 for Ts 16 mm P, -265 N/mm2 for 16 mm < Ts40 mm E-205,000 N/mm Steel: Grade S275 2 Bending 275 3 Shear とⅤ A, 키D for rolled I, H and channel sections 4 Columns KL Limiting width to thickness ratios to HK Structural Steel Code of Practice Table 7.1-Limiting width-to-thickness ratios for sections other than CHS and RHS Compression element Ratio Class 1 Class 2 Class 3 plastic compact semi- Outstand Compression Roted element due bo Flange Be 1O compact 10E 15ε 13c 136 40ε 8a GE Axial compression Not applicable Internal Compression due to b/T28 32t Not applicable Web of an Neutral axis at mid-depth H-or Box Generalily is negative section dt 100s 1+r 100 80s 120c 1+2r2 but rt is positive but 2 40s1+1.5r Not applicable but 2406 - 240ε Axial compression dvt 0.5 275 pst


3 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Two universal columns of size 203 x 203 x 60 kg/m and a steel beam
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 7.26 Torking stress in either tension or compression is AMS. 92.8 mm x 185.6 mm o MPa. am 3 m long is simply supported at each end and carries a uniformly distributed load of 10 kN/m. The beam...

    7.26 Torking stress in either tension or compression is AMS. 92.8 mm x 185.6 mm o MPa. am 3 m long is simply supported at each end and carries a uniformly distributed load of 10 kN/m. The beam at rectangular cross section, 75 mm x 150 mm. Determine the magnitude and location of the peak bending ress. Also, find the magnitude of the bending stress at a point 25 mm below the upper surface at the section midway betwcen supports....

  • A horizontal beam AB is pin-supported at the end A and carries a uniformly distributed load...

    A horizontal beam AB is pin-supported at the end A and carries a uniformly distributed load with intensity 20 kN/m and a concentrated load F as shown in the figure. The beam is also supported at C by a pinned-end column: the column is restrained laterally at mid-height in the plane of the figure but it is free to deflect perpendicular to the plane of the figure. Assume the column may buckle in any direction. The column is a solid...

  • The beam of building structure (Fig. 3a) is made of mild steel I-section beam with 80mm...

    The beam of building structure (Fig. 3a) is made of mild steel I-section beam with 80mm deep and 60mm wide as shown in Fig. 36. The beam is bolted (simply supported) onto the girder on both side over a span of 1.0 m. The loading from deck is expected to transfer onto the beam as the form of uniform distributed load, w. The material is to be treated as elastic-perfectly plastic, with yield strength of 240 MPa, and elasticity modulus...

  • P10.047 (Multistep) The simply supported beam shown in the figure consists of a W410 x 60...

    P10.047 (Multistep) The simply supported beam shown in the figure consists of a W410 x 60 structural steel wide-flange shape [E = 200 GPa; I = 216 x 100 mm"]. For the loading shown, determine the beam deflection at point B. Assume P = 88 kN, w = 94 kN/m, M = 162 kNm, and d= 1.5 m. .PL IIIIIIIIIIIII Part 3 Neglect the concentrated moment M and the concentrated load P and determine the deflection at B due to...

  • The beam of building structure (Fig. 3a) is made of mild steel I-section beam with 80mm...

    The beam of building structure (Fig. 3a) is made of mild steel I-section beam with 80mm deep and 60mm wide as shown in Fig. 36. The beam is bolted (simply supported) onto the girder on both side over a span of 1.0 m. The loading from deck is expected to transfer onto the beam as the form of uniform distributed load, w. The material is to be treated as elastic-perfectly plastic, with yield strength of 240 MPa, and elasticity modulus...

  • A square wood platform of side-length ? = 2.4 m rests on masonry walls. The deck...

    A square wood platform of side-length ? = 2.4 m rests on masonry walls. The deck of the platform is constructed of 4 cm thick planks supported on two beams which are 2.4 m long. The beams have a width of 100 mm and height of 150 mm and are supported at their ends by the walls. The structure is designed to support a uniformly distributed load, ?? (kN/m2), acting over the entire top surface of the platform. The tensile...

  • Question 2 (25 marks) A square wood platform of side-length L = 2.4 m rests on...

    Question 2 (25 marks) A square wood platform of side-length L = 2.4 m rests on masonry walls. The deck of the platform is constructed of 4 cm thick planks supported on two beams which are 2.4 m long. The beams have a width of 100 mm and height of 150 mm and are supported at their ends by the walls. The structure is designed to support a uniformly distributed load, wA (kN/m2), acting over the entire top surface of...

  • x Incorrect Two beams support a uniformly distributed load of w = 28 kN/m, as shown....

    x Incorrect Two beams support a uniformly distributed load of w = 28 kN/m, as shown. Beam (1) is supported by a fixed support at A and by a simply supported beam (2) at D. In the unloaded condition, beam (1) touches, but exerts no force on, beam (2). Beam (1) has a depth of 300 mm, a moment of inertia of 11 = 125 x 106 mm, a length of L = 3.4 m, and an elastic modulus of...

  • 3. Given a. W27X84 A992 Steel beam is simply supported over a 25' FT beam length. b. The compress...

    Steel Design 3. Given a. W27X84 A992 Steel beam is simply supported over a 25' FT beam length. b. The compression flange of the beam is fully braced along the beam length. c. A uniformly distributed service dead load of 2.5 KLF. d. A uniformly distributed service live load of 3.5 KLF. e. A live load deflection limit of L/360. A dead live load deflection limit of L/240. f. Neglect the self-weight of the beam in all calculations. Determine: The...

  • 4. The beam AC shown in Figure 4 is supported by two columns AE and BD, and carries a load P (P-50 kN). The columns hav...

    4. The beam AC shown in Figure 4 is supported by two columns AE and BD, and carries a load P (P-50 kN). The columns have the same square cross section hxh, Young's modulus E 2x105 MPa. Determine the minmum dimension h of the cross section such that both columns do not fail in elastic buckling. Use the factor of safety of 1.2 against buckling. Pin connections are used for ends E, A, and B as shown in Figure 4....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT