Question

Consider the following figure of two charged spheres suspended from insulating strings as shown. Electric Force suppose the charge q on each small sphere is 1.0 μC, the distance a is 30 cm, and L-50 cm. What is the magnitude of the electric force acting on each charged sphere? Use for the Coulomb constant ke 9,0x 10 Nm 1C The electric force magnitude isN. (Give the correct number) Your answer

0 0
Add a comment Improve this question Transcribed image text
Answer #1

MAGNITUDE OF ELECTRIC FORCE = kq^2 / (2a)^2

= 9*10^9*(10^-6)^2/ (2*0.3)^2

= 0.025 N/C

so the electric force magnitude is 0.025 N/C

Add a comment
Know the answer?
Add Answer to:
Consider the following figure of two charged spheres suspended from insulating strings as shown. Electric Force...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider the following figure of two charged spheres suspended from insulating strings as shown 2. Suppose...

    Consider the following figure of two charged spheres suspended from insulating strings as shown 2. Suppose the charge q on each small sphere is 1.0 μC, the distance a is 30 cm, and L = 50 cm Determine the best match for each item. Suppose the charge q on each small sphere is 1.0 HC, the distance a is 30 cm, and L-50 cm Determine the best match for each item. net force for each sphere Choose... string tensionN Choose...

  • Electric Force Suppose the charge q on each small sphere is 1.0 HC, the distance a...

    Electric Force Suppose the charge q on each small sphere is 1.0 HC, the distance a is 30 cm, and L 50 cm. What is the magnitude of the electric force acting on each charged sphere? Use for the Coulomb constant k,-9.0x 10 Nmc The electric force magnitude isN. (Give the correct number)

  • Two small metallic spheres, each of mass 0.20 g, are suspended as pendulums by light strings...

    Two small metallic spheres, each of mass 0.20 g, are suspended as pendulums by light strings from a common point as shown in the figure below. The spheres are given the same electric charge, and it is found that they come to equilibrium when each string is at an angle of 5.0° with the vertical. If each string is 30.0 cm long, what is the magnitude of the charge on each sphere?

  • Two small insulating spheres with radius 7.00×10−2 m are separated by a large center-to-center distance of...

    Two small insulating spheres with radius 7.00×10−2 m are separated by a large center-to-center distance of 0.575 m . One sphere is negatively charged, with net charge -1.70 μC , and the other sphere is positively charged, with net charge 3.90 μC . The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2) .

  • Two small insulating spheres with radius 3.00×10−2 m are separated by a large center-to-center distance of...

    Two small insulating spheres with radius 3.00×10−2 m are separated by a large center-to-center distance of 0.575 m . One sphere is negatively charged, with net charge -1.05 μC , and the other sphere is positively charged, with net charge 3.45 μC . The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2) .

  • Two small insulating spheres with radius 6.00×10−2 m are separated by a large center-to-center distance of...

    Two small insulating spheres with radius 6.00×10−2 m are separated by a large center-to-center distance of 0.600 m . One sphere is negatively charged, with net charge -1.05 μC , and the other sphere is positively charged, with net charge 3.30 μC. The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2) .

  • Two small metallic spheres, each of mass m-0.25 g, are suspended as pendulums by light strings...

    Two small metallic spheres, each of mass m-0.25 g, are suspended as pendulums by light strings from a common point as shown in the figure below. The spheres are given the same electric charge, and it is found that they come to equilibrium when each string is at an angle of θ-4.80 with the vertical. If each string has length L 38.0 cm, what is the magnitude of the charge on each sphere?

  • Two small metallic spheres, each of mass m-0.40 g, are suspended as pendulums by light strings...

    Two small metallic spheres, each of mass m-0.40 g, are suspended as pendulums by light strings from a common point as shown in the figure below. The spheres are given the same electric charge, and it is found that they come to equilibrium when each string is at an angle of θ = 7.5° with the vertical. If each string has length L 28.0 cm, what is the magnitude of the charge on each sphere? nC

  • Two small insulating spheres

    Two small insulating spheres with radius 5.50×10-2 are separated by a large center-to-center distance of 0.575 . One sphere is negatively charged, with net charge-1.25 , and the other sphere is positively charged, with net charge 3.30 . The charge is uniformly distributed within the volume of each sphere.What is the magnitude of the electric field midway between the spheres?Take the permittivity of free space to be = 8.85×10-12 . C^2/(N*m^2)

  • Two small spheres each have a mass m of 0.100 g and are suspended as pendulums...

    Two small spheres each have a mass m of 0.100 g and are suspended as pendulums by light insulating strings from a common point, as shown in the figure below. The spheres are given the same electric charge, and the two come to equilibrium when each string is at an angle of θθ= 3.00∘∘; with the vertical. 1) If each string is 1.00 m long, what is the magnitude of the charge on each sphere? (Express your answer to three...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT