Question

IV. Using Models of Compounds with One Chiral Center 17. Use your model kit to construct a model of the glyceraldehyde molecu

glceraldehyde molecule

glyceraldehyde molecule
0 0
Add a comment Improve this question Transcribed image text
Answer #1

18. C-2 is the chiral center.

21. Yes, they are the non-superimposable mirror images of each other, hence they fit the criteria for optical isomers.

22. The mirror images of glyceraldehyde can be drawn as follows.

он OH Hotels -ОНФН

Add a comment
Know the answer?
Add Answer to:
glceraldehyde molecule glyceraldehyde molecule IV. Using Models of Compounds with One Chiral Center 17. Use your...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • V Using Models of Compounds with Two Chiral Centers 25. On your drawing, use arrows to...

    V Using Models of Compounds with Two Chiral Centers 25. On your drawing, use arrows to indicate the at- oms that could be chiral centers (34). 23. Construct a model of 2,3,4-trihydroxybutanal, as shown in Figure 4 26. Make a template for the atoms attached to carbon 2 in the molecule. The groups of atoms attached to carbon 2 may not touch the paper, but you can still mark their relative positions (35). OH OH HI H-C C aC 27....

  • 3. Diastereomers and Meso Forms. When a molecule has two or more stereogenic centers, stereoisomers that...

    3. Diastereomers and Meso Forms. When a molecule has two or more stereogenic centers, stereoisomers that are not mirror images can exist; these are called diastereoisomers. Within this general class, there are special types of stereoisomers that are always optically inactive and are called meso forms. Construct a model with four different colored balls about a carbon center. Construct another identical to the first and verify this by the superimposition test. Now remove the same colored balls, blue (C from...

  • 19-26 thanks! 19-29* PART 3: 2,3-BUTANEDIOL CH-CH(OH)-CH(OH)-CH, mirror images, not superimposable Build as many models of...

    19-26 thanks! 19-29* PART 3: 2,3-BUTANEDIOL CH-CH(OH)-CH(OH)-CH, mirror images, not superimposable Build as many models of 2,3-butanediol as you can. First, attach two carbons with a single bond. To each carbon add one carbon, one hydrogen, and one oxygen. To complete the structure, Ti the remaining hydrogen atoms. Remember, a model is not different if it is completely superimposable on one already constructed! 13. How many stereochemically different models are possible for 2,3-butanediol? 14. What characteristic does one of these...

  • 3. Diastereomers and Meso Forms. When a molecule has two or more stereogenic centers, stereoisomers that...

    3. Diastereomers and Meso Forms. When a molecule has two or more stereogenic centers, stereoisomers that are not mirror images can exist; these are called diastereoisomers. Within this general class, there are special types of stereoisomers that are always optically inactive and are called meso forms. Construct a model with four different colored balls about a carbon center. Construct another identical to the first and verify this by the superimposition test. Now remove the same colored balls, blue (C from...

  • 1. Construct a model consisting of a tetrahedral carbon center with four different component atoms attached:...

    1. Construct a model consisting of a tetrahedral carbon center with four different component atoms attached: red, white, blue, green; each color represents a different group or atom attached to carbon. Does this model have a plane of symmetry (1a)? A plane of symmetry can be described as a cutting plane-a plane that when passed through a model or object divides it into two equivalent halves; the elements on one side of the plane are the exact reflection of the...

  • 3. Cyclic compounds The presence of the ring in all but very large ring cyclic molecules...

    3. Cyclic compounds The presence of the ring in all but very large ring cyclic molecules prevents full rotation of the ring atoms. For this reason, stereoisomerism may also occur in cyclic molecules. a) Prepare a model of cyclohexane, C6H12. Draw the condensed formula. b) Build a model of methylcyclohexane (C7H14) by replacing one of the hydrogens of cyclohexane with a methyl group. Draw the skeletal formula for methylcyclohexane. 2 c) How many different isomers exist for methylcyclohexane (CyH34)? d)...

  • rojection Formulas for each model in #16 (again orient the carbon chain up and down). Are...

    rojection Formulas for each model in #16 (again orient the carbon chain up and down). Are the mirror images "superimposable?" Interchange any two of the groups located at one of the chiral centers on one of the models in # 1 6. What is the stereochemical relationship of the resulting structure with the one that used to be its mirror image? Will this 'new' model be "optically active?" Why or why not? 18. PART 4:2,3-DICHLOROPENTANE CH, CH(C)-CHC)-CH2CH Build a model...

  • In this problem, how do you know which atoms or groups are going away, towards you, or in plane from the chiral center?...

    In this problem, how do you know which atoms or groups are going away, towards you, or in plane from the chiral center? for example, why do they assume that hydrogen is going away (dotted line) and Ch3 is coming towards you (bold colored line)? And how do you know which direction Ch2Ch2Br and Br is going in? its just a single line (Not dotted or bold). I know directions are important in determining R/S. Ex: In the second photo...

  • please solve all 4. Enantiomers.- THIS FOLLOWING EXERCISES ON PAGES 6 AND 7 ARE TO BE...

    please solve all 4. Enantiomers.- THIS FOLLOWING EXERCISES ON PAGES 6 AND 7 ARE TO BE DONE AS A GROUP WITH THE LAB INSTRUCTOR!!!! a) Construct a model consisting of a tetrahedral carbon center with four different atoms attached - use white, green, orange and violet balls. Each color represents a different group or atom attached to the central carbon. Does this model have a plane of symmetry? Note 1: a plane of symmetry can be described as a cutting...

  • A. Enantiomers: Certain substances have the unique property of rotating the plane of plane-polarized light. Such...

    A. Enantiomers: Certain substances have the unique property of rotating the plane of plane-polarized light. Such light rotation is detectable with the aid of a polarimeter. In order for a molecule to be optically active it must be chiral. Chiral objects lack a plane of symmetry and are non-superimposable on their mirror images. A sp?- hybridized carbon atom can fulfill these requirements if all four of its substituents are different. 1. Methane a) Prepare a methane molecule and then substitute...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT