Question

ReviewI Constants TACTICS BOx 14.1 Identifying and analyzing simple harmonic motion Learning Goal: 1. If the net force acting on a particle is a linear restoring force, the motion will be simple harmonic motion around the equilibriunm To practice Tactics Box 14.1 Identifying and analyzing simple harmonic motion. position. 2. The position, velocity, and acceleration as a function of time are given in Synthesis 14.1 (Page 447) x(t)- Acos(2ft) Ug (t) = -(2rf)A sin( 2rft), A complete description of simple harmonic motion must take into account several physical quantities and various mathematical relations among them. This Tactics Box summarizes the essential information needed to solve oscillation problems of this type The equations are given here in terms of X, but they can be written in terms of y, or some other variable if the situation calls for it. 3· The amplitude A is the maximum value of the displacement from equilibrium. The maximum speed and the maximum magnitude of the acceleration are given in Synthesis 14.1 (Page 447): vmax-2nfA and amax-(2πf)2 A, respectively 4. The frequency f (and hence the period T-1/f) depends on the physical properties of the particular oscillator, but f does not depend on A. For a mass on a spring, the frequency is given by 5. The sum of potential energy plus kinetic energy is constant. As the oscillation proceeds, energy is transformed from kinetic into potential energy and then back again. ▼ Part A The position of a 40 g oscillating mass is given by (t) (2.0 cm) cos(10t), where t is in seconds. Determine the velocity at 0.40s Express your answer in meters per second to two significant figures. View Available Hint(s) m/s Submit

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
ReviewI Constants TACTICS BOx 14.1 Identifying and analyzing simple harmonic motion Learning Goal: 1. If the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • + PSS: Simple Harmonic Motion II: Energy ① 2 0f7 Constants Learning Goal: Part B To...

    + PSS: Simple Harmonic Motion II: Energy ① 2 0f7 Constants Learning Goal: Part B To practice Problem Solving Strategy: Simple Harmonic Motion Il: Energy A child's toy consists of a spherical object of mass 50 g attached to a spring. One end of the spring is fixed to the side of the baby's crib so that when the baby pulls on the toy and lets go, the object oscillates horizontally with a simple harmonic motion. The amplitude of the...

  • Constants Periodic lable Part A A complete description of simple harmonic motion must take into account...

    Constants Periodic lable Part A A complete description of simple harmonic motion must take into account several physical quantities and various mathematical relations among them. This information is needed to solve oscillation problems of this type. Determine the velocity at t = 0.40 s. Express your answer in meters per second to two significant figures. View Available Hint(s) The position of a 60 g oscillating mass is given by z(t) (2.0 cm) cos(10t), where t is in seconds. Uz- m/s...

  • 1. A simple harmonic motion of an object of mass m = 11 kg attached with...

    1. A simple harmonic motion of an object of mass m = 11 kg attached with a spring is represented as time vs displacement graph in the following figure. Find the following parameters. (a) Amplitude = (b) Time Period = ( time for 1 wavelength distance) (c) Frequency = (d) Spring Constant = (e) Angular frequency = (f) Maximum Potential Energy stored in the spring (g) Maximum Kinetic Energy of the block (h) total energy of the spring -block system

  • 1. A simple harmonic motion of an object of mass m = 11 kg attached with...

    1. A simple harmonic motion of an object of mass m = 11 kg attached with a spring is represented as time vs displacement graph in the following figure. Find the following parameters. VAAAA (a) Amplitude = (b) Time Period = ( time for 1 wavelength distance) (c) Frequency = (d) Spring Constant = (e) Angular frequency = (f) Maximum Potential Energy stored in the spring (g) Maximum Kinetic Energy of the block (h) total energy of the spring -block...

  • 1. A simple harmonic motion of an object of mass m = 11 kg attached with...

    1. A simple harmonic motion of an object of mass m = 11 kg attached with a spring is represented as time vs displacement graph in the following figure. Find the following parameters. AM -1.5m (a) Amplitude = (b) Time Period = ( time for 1 wavelength distance) (c) Frequency = (d) Spring Constant = (e) Angular frequency = (f) Maximum Potential Energy stored in the spring (g) Maximum Kinetic Energy of the block (h) total energy of the spring...

  • Homework for Lab 15: Simple Harmonic Motion Name Date Section 15 10 -5 -15-10-5 0 5...

    Homework for Lab 15: Simple Harmonic Motion Name Date Section 15 10 -5 -15-10-5 0 5 10 15 Displacement (em) Figure 15.6: Force vs displacement graph for a 0.75 kg cart on a horizontal spring. 1. Figure 15.6 shows the force exerted by the spring on a 0.75 kg cart, as a function of its displacement from equilibrium. Positive displacements (in cm) represent stretching of the spring; negative displacements represent compression. Find the spring constant. 2. The cart is moved...

  • 1. The solution for a SHO (simple harmonic oscillator) is given as: x(t) = 0.1 sin(3t...

    1. The solution for a SHO (simple harmonic oscillator) is given as: x(t) = 0.1 sin(3t − π/6) meters. Include appropriate units in your answers. (a) What is the amplitude of oscillation? (b) What is the initial position of the oscillator? (c) What is the maximum velocity of the oscillator and at what value of x does it occur? (d) What is the maximum acceleration of the oscillator and where does it occur? (e) What are the period and frequency...

  • Equations of Simple Harmonic Motion (basic) PLEASE! show work and only answer if you know how...

    Equations of Simple Harmonic Motion (basic) PLEASE! show work and only answer if you know how to do it. People keeps giving me the wrong answer. Analyzing Newton's 2^nd Law for a mass spring system, we found a_x = -k/m X. Comparing this to the x-component of uniform circular motion, we found as a possible solution for the above equation: x = Acos(omega t) v_x = - omega Asin(omega t) a_x = - omega^2 Acos(omega t) with omega = square...

  • Review Constants Let's begin with a straightforward example of simple harmonic motion (SHM). A spring is...

    Review Constants Let's begin with a straightforward example of simple harmonic motion (SHM). A spring is mounted horizontally on an air track as in (Figure 1), with the left end held stationary. We attach a spring balance to the free end of the spring, pull toward the right, and measure the elongation. We determine that the stretching force is proportional to the displacement and that a force of 60 N causes an elongation of 0.030 m. We remove the spring...

  • A particle undergoes simple harmonic motion (SHM) in one dimension. The r coordinate of the particle...

    A particle undergoes simple harmonic motion (SHM) in one dimension. The r coordinate of the particle as a function of time is r(t)Aco() where A is the called the amptde" and w is called the "angular frequency." The motion is periodic with a period T given by Many physical systems are described by simple harmonic motion. Later in this course we will see, for example, that SHM describes the motion of a particle attached to an ideal spring. (a) What...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT