Question

2. The reaction A → products was found to be second order order and have a rate constant, k, of 0.681 M-1 5-1. If the initial

0 0
Add a comment Improve this question Transcribed image text
Answer #1

For a second order reaction -1 =kt CAo CA y initial concentration concentration after a time to = K + It we plot a graph of Its К САО (6.6810s) x (0.885M) t₂ = 1.65924156 See

Add a comment
Know the answer?
Add Answer to:
2. The reaction A → products was found to be second order order and have a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • For a first-order reaction, the half-life is constant. It depends only on the rate constant k...

    For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t 1/2 = 0.693 k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t 1/2 = 1 k[A ] 0 Part A A certain first-order reaction ( A→products ) has a rate constant of 9.90×10−3 s −1 at 45 ∘...

  • + Half-life for First and Second Order Reactions 11 of 11 The half-life of a reaction,...

    + Half-life for First and Second Order Reactions 11 of 11 The half-life of a reaction, t1/2, is the time it takes for the reactant concentration A to decrease by half. For example, after one half-Me the concentration falls from the initial concentration (Alo to A\o/2, after a second half-life to Alo/4 after a third half-life to A./8, and so on. on Review Constants Periodic Table 11/25 For a second-order reaction, the half-life depends on the rate constant and the...

  • The half-life of a reaction, t1/2, is the time it takes for the reactant concentration [A]...

    The half-life of a reaction, t1/2, is the time it takes for the reactant concentration [A] to decrease by half. For example, after one half-life the concentration falls from the initial concentration [A]0 to [A]0/2, after a second half-life to [A]0/4, after a third half-life to [A]0/8, and so on. on. For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a...

  • A certain first-order reaction ( A products) has a rate constant of 5.10x10-35-1 at 45 °C....

    A certain first-order reaction ( A products) has a rate constant of 5.10x10-35-1 at 45 °C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Express your answer with the appropriate units. View Available Hint(s) ? HA Value O Units Submit Part B A certain second-order reaction (B>products) has a rate constant of 1.10x10-3M-1.s-1 at 27°C and an initial half-life of 212 s . What is the concentration...

  • A certain first-order reaction (A products) has a rate constant of 5.40 10-3 s I at...

    A certain first-order reaction (A products) has a rate constant of 5.40 10-3 s I at 45 °C How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? at 27 °C A certain second-order reaction (B-products) has a rate constant of 1.05x10-3 M 1.s and an initial half-life of 266 s What is the concentration of the reactant B after one half-life?

  • For a first-order reaction, the half-life is constant. It depends only on the rate constant k...

    For a first-order reaction, the half-life is constant. It depends only on the rate constant k k and not on the reactant concentration. It is expressed as t1/2=0.693k t 1 / 2 = 0.693 k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0. A certain first-order reaction (A→products A → p r o d u c t s ) has a rate constant of 9.30×10−3...

  • Part A. A certain first-order reaction (A→products) has a rate constant of 3.90×10−3 s−1 at 45...

    Part A. A certain first-order reaction (A→products) has a rate constant of 3.90×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Part B. A certain second-order reaction (B→products) has a rate constant of 1.90×10−3 M−1⋅s−1 at 27 ∘C and an initial half-life of 298 s . What is the concentration of the reactant B after one half-life?

  • The reactions in the table are all zero order and follow the same general reaction process...

    The reactions in the table are all zero order and follow the same general reaction process of A → products. Half-life, 112 (8) Rate constant, * (M.5-) Initial concentration, [A]. (M) Reaction 1 3.71 0.0731 ? Reaction 2 0.0671 0.971 Reaction 3 5.11 ? 0.411 Reaction 4 4.31 0.0771 ? Reaction 5 4.31 0.371 ? ? Calculate the missing values for half-life (fin), rate constant (k), and initial concentration, (Alo. reaction 1 initial concentration, (Alo: M action 2 half-life, 112...

  • The reactions in the table are all zero order and follow the same general reaction process...

    The reactions in the table are all zero order and follow the same general reaction process of A→products. Half‑life, t1/2 (s) Rate constant, k (M⋅s−1) Initial concentration, [A]0 (M) Reaction 1 5.31 0.0731 ? Reaction 2 ? 0.0391 0.571 Reaction 3 5.91 ? 0.491 Reaction 4 3.31 0.0371 ? Reaction 5 6.31 ? 0.351 Calculate the missing values for half‑life (t1/2 ), rate constant (k), and initial concentration, [A]0. reaction 1 initial concentration, [A]0: M reaction 2 half‑life, t1/2: s...

  • A certain second-order reaction (B→products) has a rate constant of 1.20×10−3 M−1⋅s−1 at 27 ∘C and...

    A certain second-order reaction (B→products) has a rate constant of 1.20×10−3 M−1⋅s−1 at 27 ∘C and an initial half-life of 260 s . What is the concentration of the reactant B after one half-life?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT