Question

Consider a particle confined to one dimension and positive z with the wave function 0 where N is a real normalization constant and α is a real positive constant with units of (length)-1. For the following, express your answers in terms of α: f) Calculate the expectation value of the momentum, (p) via the canonical expression -0o g) Calculate the expectation value of (p) via the canonical expression h) Use your results for(i) and (pay to calculate the variance in momentum, σ i Calculate the uncertainty product ơzOy Is your result consistent with the Heisenberg uncertainty princi- ple?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Al or 11 otKe xe 2. oe.;)..//fpk e-oe r Coua keoen_2ete.eex) dr -20でχ Hot be 2, 2 2 2 Ho ce oe久2.0 240Ge or Ge 400I will be glad to see your comment if you have any query and thumb up if you are satisfied. Thanks....

Add a comment
Know the answer?
Add Answer to:
Consider a particle confined to one dimension and positive z with the wave function 0 where...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a particle confined to one dimension and positive r with the wave function 0, z<0...

    Consider a particle confined to one dimension and positive r with the wave function 0, z<0 where N is a real normalization constant and o is a real positive constant with units of (length)-1. For the following, express your answers in terms of a: a) Calculate the momentum space wave function. b) Verify that the momentum space wave function is normalized such that (2.4) c) Use the momentum space wave function to calculate the expectation value (p) via (2.5)

  • Consider a particle confined to one dimension and positive with the wave function Nxear, x20 x<0...

    Consider a particle confined to one dimension and positive with the wave function Nxear, x20 x<0 0 where N is a real normalization constant and α is a real positive constant with units of (length)-1. For the following, express your answers in terms of α: a) Find the normalization constant N. What are the units of your result and do they make sense? b) What is the most probable location to find the particle, or more precisely, at what z...

  • The initial wave function of a free particle is: Ψ(x,0) = A, for |x| = 0,...

    The initial wave function of a free particle is: Ψ(x,0) = A, for |x| = 0, otherwise where a and A are positive real numbers. The particle is in a zero (or constant) potential environment since it is a free particle a) Determine A from normalization. b) Determine φ(p) = Φ(p,0), the time-zero momentum representation of the particle state. What is Φ(p,t)? Sketch φ(p). Locate the global maximum and the zeros of φ(p). Give the expression for the zeros (i.e.,...

  • Consider a particle of mass m that is described by the wave function (x, t) =...

    Consider a particle of mass m that is described by the wave function (x, t) = Ce~iwte-(x/l)2 where C and l are real and positive constants, with / being the characteristic length-scale in the problem Calculate the expectation values of position values of 2 and p2. and momentum p, as well as the expectation Find the standard deviations O and op. Are they consistent with the uncertainty principle? to be independent What should be the form of the potential energy...

  • 3. Consider the wave function ψ(x)- 슬 읔 ets, where σ s a real valued constant...

    3. Consider the wave function ψ(x)- 슬 읔 ets, where σ s a real valued constant (a) Calculate the expectation value of K). K (b) Estimate the uncertainty Δ.r and Ap using Δ.1-V (.12)-(A)2. 4. Consider the eigenfunctions of the moment uni operator y p r her (a) Show that p,(r) is an eigenfunction of p with an cigenvalue p. (b) Find the coeflicients. w, in the espansion of (r)( upypp ) using the momentum eigenfunctions.

  • Problem 3: A free particle of mass m in one dimension is in the state Hbr...

    Problem 3: A free particle of mass m in one dimension is in the state Hbr Ψ(z, t = 0) = Ae-ar with A, a and b real positive constants. a) Calculate A by normalizing v. b) Calculate the expectation values of position and momentum of the particle at t 0 c) Calculate the uncertainties ΔΧ and Δ1) for the position and momentum at t 0, Do they satisfy the Heisenberg relation? d) Find the wavefunction Ψ(x, t) at a...

  • A “wavicel” (wave-particle-duality thingy) is confined to be in a very small but finite region of...

    A “wavicel” (wave-particle-duality thingy) is confined to be in a very small but finite region of one dimensional space. (Interpret the confinement as the existence of walls that this thingy is never able to penetrate or overcome, while it is able to move in its allotted region of space freely.) (a) Calculated the expectation value of position (x) and its spread (Δx) for the first exited state of that thingy. Calculate now the expectation value for the momentum (p) and...

  • 3- A one-dimensional harmonic oscillator wave function is ψ(x) = Axe-bx2 a) Find the total energy...

    3- A one-dimensional harmonic oscillator wave function is ψ(x) = Axe-bx2 a) Find the total energy E b) Find the constant b c) Find the normalization constant A. d) Find the expectation value of x, e) Find the uncertainty in x, Ох. f) Find the expectation value of p g) Find the uncertainty in p, Op For the Hamiltonian matrix shown below: 3- A one-dimensional harmonic oscillator wave function is ψ(x) = Axe-bx2 a) Find the total energy E b)...

  • part (e),(f) and (g) 3. Wave functions (40 marks) Consider particle described by wave function (x)...

    part (e),(f) and (g) 3. Wave functions (40 marks) Consider particle described by wave function (x) = Ce-x/a for x > 0, and otherwise (C is a real and non-negative). (a) Normalise (x) and plot it (you can use a computer to plotit). (b) Calculate the probability that the particle is located within distance a from the origin. (e) Find mean value of position measurement. (d) Find mean value of momentum measurement. Hint: use the fact that (x) is purely...

  • 4. A (one dimensional) particle in a box of length 2a (i.e., zero potential energy) is...

    4. A (one dimensional) particle in a box of length 2a (i.e., zero potential energy) is represented by the wavefunction v(x) 0, otherwise a. Sketch the wavefunction. Write down the (time independent) Schrodinger equation. Show whether or not the wavefunction is a solution to the equation. b. What does it mean physically if the wavefunction of the particle is NOT a solution to the Schrodinger equation? Explain. c. Determine the normalization constant A. 5. Same system. Find the average or...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT