Question

Identify the orbits in the Bohr Model of the Hydrogen atom responsible for each quantum state....

Identify the orbits in the Bohr Model of the Hydrogen atom responsible for each quantum
state. The Bohr Model provides that the radius of the electron’s orbit is given by:

r = 0.529 x n 2 [Angstroms] (Eq. 8)

where n is the state’s quantum number. Calculate the radius of each of these orbits.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

r = 0.529 x n^2A0

n = 1 for first orbit

r = 0.529 x (1)^2A0   

   = 0.529A0

n = 2 for second orbit

r = 0.529 x (2)^2A0   

   =2.116A0

n = 3 for third orbit

r = 0.529 x (3)^2A0   

= 4.761A0

n = 4 for fourth orbit

r = 0.529 x (4)^2A0   

= 8.464A0

Add a comment
Know the answer?
Add Answer to:
Identify the orbits in the Bohr Model of the Hydrogen atom responsible for each quantum state....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In an early model of the hydrogen atom (the Bohr model), the electron orbits the proton...

    In an early model of the hydrogen atom (the Bohr model), the electron orbits the proton in uniformly circular motion. The radius of the circle is restricted (quantized) to certain values given by r = n^2a_0, for n = 1, 2, 3, ..., where a_0 = 52.92 pm. What is the speed of the electron if it orbits in (a) the smallest allowed orbit and (b) the seventh smallest orbit? (c) If the electron moves to larger orbits, does its...

  • In an early model of the hydrogen atom (the Bohr model), the electron orbits the proton...

    In an early model of the hydrogen atom (the Bohr model), the electron orbits the proton in uniformly circular motion. The radius of the circle is restricted (quantized) to certain values given by rn2 for n1,2, 3.,.. where ao52.92 pm. What is the speed of the electron if it orbits in (a) the smallest allowed orbit and (b) the third smallest orbit? (c) If the electron moves to larger orbits, does its speed increase, decrease, or stay the same?

  • In Bohr's model of a Hyodrogen atom, electrons move in orbits labeled by the quantum number...

    In Bohr's model of a Hyodrogen atom, electrons move in orbits labeled by the quantum number n.  Find the radius, in meters, of the orbit of an electron around a Hydrogen atom in the n = 5 state according to Bohr’s theory.

  • Question #1 Hydrogen atom consists of one electron and one proton. In the Bohr model of...

    Question #1 Hydrogen atom consists of one electron and one proton. In the Bohr model of the Hydrogen atom, the electron orbits the proton in a circular orbit of radius 0.529 E-10 m. This radius is known as the Bohr Radius. Calculate the smallest amount of kinetic energy the electron must have in order to leave its circular orbit and move to infinity far from the proton? Question #2 The potential in a region between x = 0 and x...

  • Bohr model of an atom In the Bohr model of an atom (see figure below) the...

    Bohr model of an atom In the Bohr model of an atom (see figure below) the electrons move on fixed circular orbits around the nucleus. On the th orbit the magnitude of the angular momentum of the electron is given by where ћ 6.626 x 10-34 m 2 kg/s is the reduced Planck constant. +Ze (a) Calculate the radius r of an electron orbit in the hydrogen atom. Express your answer in terms of n, ћ, co, the electron charge...

  • In the Bohr model of the hydrogen atom, the allowed orbits of the electron (labeled n...

    In the Bohr model of the hydrogen atom, the allowed orbits of the electron (labeled n = 1, 2, 3, …) have angular momentum , orbital radii , and energies . In these expressions me is the mass of the electron. In an exotic atom the electron is replaced by a different subatomic particle that has the same charge as an electron but a different mass. Two examples that have been studied are muonic hydrogen, in which the electron is...

  • In the Bohr model of the hydrogen atom an electron orbits a proton in a circular...

    In the Bohr model of the hydrogen atom an electron orbits a proton in a circular orbit od radius 0.53x 10^-10 m (a) what is the eclectric potential at the electrons orbit due to the proton? (b) What is the kinetic energy of the electron? (c) what is the total energy of the electron in its orbit?(d) What is the ionization energy that is the energy required to remove the electron from the atom ant take it to rest ?

  • In the Bohr model of the hydrogen atom, the allowed orbits of the electron (labeled n...

    In the Bohr model of the hydrogen atom, the allowed orbits of the electron (labeled n = 1, 2, 3, …) have angular momentum , orbital radii , and energies . In these expressions me is the mass of the electron. In an exotic atom the electron is replaced by a different subatomic particle that has the same charge as an electron but a different mass. Two examples that have been studied are muonic hydrogen, in which the electron is...

  • In the Bohr model of the hydrogen atom, an electron orbits a proton (the nucleus) in...

    In the Bohr model of the hydrogen atom, an electron orbits a proton (the nucleus) in a circular orbit of radius 0.52x10-10 m. (a) What is the electric potential at the position of the electron's orbit due to the proton? (b) What is the kinetic energy of the electron? Express the result in eV and J. (c) What is the total energy of the electron in its orbit? Express the result in eV and J. (d) What is the ionization...

  • In the Bohr model of the hydrogen atom, an electron orbits a proton (the nucleus) in...

    In the Bohr model of the hydrogen atom, an electron orbits a proton (the nucleus) in a circular orbit of radius 0.52x10-10 m. (a) What is the electric potential at the position of the electron's orbit due to the proton? (b) What is the kinetic energy of the electron? Express the result in eV and J. (c) What is the total energy of the electron in its orbit? Express the result in eV and J. (d) What is the ionization...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT