Question

Air at 10°C and 80 kPa (static values) enters the diffuser of a jet engine steadily with a velocity of 200 m/s. The inlet are

0 0
Add a comment Improve this question Transcribed image text
Answer #1

T10231 airt V200 mls A-o.4 m2 V2 = 40 m ls azdensity kylm2 0-93 O-287x 293 2 gis masS O.98x 04 X 200 -78.197 Tnlet stagnatlan

Add a comment
Know the answer?
Add Answer to:
Air at 10°C and 80 kPa (static values) enters the diffuser of a jet engine steadily...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Air at 10 degree C and 80 kPa enters the diffuser of a jet engine steadily...

    Air at 10 degree C and 80 kPa enters the diffuser of a jet engine steadily with a velocity of 200 m/s. The inlet area of the diffuser is 0.4 m^2.The air leaves the diffuser with a velocity that is very small compared with the inlet velocity. Determine the mass flow rate of the air and the temperature of the air leaving the diffuser. Air at 100 kPa and 280 K is compressed steadily to 600 kPa and 400 K....

  • Air steadily enters the diffuser section of a jet engine at a velocity of 270 m/s...

    Air steadily enters the diffuser section of a jet engine at a velocity of 270 m/s at 85 kPa and at 250 °C. There is heat addition from the diffuser walls to the air. The air exits the diffuser at 1/3 of its inlet velocity. The heat addition per kg air entering the diffuser is 13 kJ/kg. What is the change in the specific enthalpy of the air (kJ/kg)?

  • 4. CO2 flows steadily through the duct shown from 350 kPa, 60°C, and 120 m/s at...

    4. CO2 flows steadily through the duct shown from 350 kPa, 60°C, and 120 m/s at the inlet state to M -1.3 at the outlet, where local isentropic stagnation conditions are known to be 385 kPa and 350 K. Compute the local isentropic stagnation pressure and temperature at the inlet and the static pressure and temperature at the duct outlet. Flow Inlet Outlet

  • The diffuser in a jet engine is designed to decrease the kinetic energy of the air entering the j...

    The diffuser in a jet engine is designed to decrease the kinetic energy of the air entering the jet engine compressor without any work or heat interactions. Following information is recorded; Entering diffuser Velocity = 500 ms Pressure 100 kPa Temperature 20°0 The exit of a diffuser Velocity- 329.55 m/s Pressure 200 kPa Temperature- 90°0 The molecular mass of air = 28.96 kg/kmol Note for air, Cp/R-A+BT+CT2+DT2 ET3 with T in Kelvin Name Air B*103 0.575 D*10-5 0.016 C*106 E*109...

  • The diffuser in a jet engine is designed to decrease the kinetic energy of the air...

    The diffuser in a jet engine is designed to decrease the kinetic energy of the air entering the engine compressor without any work or heat interactions. Calculate the velocity at the exit of a diffuser when air at 100 kPa and 30°C enters it with a velocity of 358 m/s and the exit state is 200 kPa and 90°C. The specific heat of air at the average temperature of 60°C = 333 K is cp = 1.007 kJ/kg·K.

  • Nitrogen gas at 60 kPa and 7°C enters an adiabatic diffuser steadily with a velocity of...

    Nitrogen gas at 60 kPa and 7°C enters an adiabatic diffuser steadily with a velocity of 200 m/s and leaves at 85 kPa and 22°C. Determine (a) the exit velocity of the nitrogen and (b) the ratio of the inlet to exit area A1/A2. Why in this question we ignore the value of mass flow rate ?

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 353 Inlet pressure: Pl (kPa) = 546 Inlet Velocity: V1 (m/s) = 61 Area at nozzle inlet: A1 (cm^2) = 7.24...

  • 5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves...

    5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves at 100 kPa and 180 m/s. The inlet area of the nozzle is 80 cm². Determine (a) the mass flow rate through the nozzle, (b) the exit temperature of the air, and (c) the exit area of the nozzle. Answers: (a) 0.5304 kg/s, (b) 184.6°C, (c) 38.7 cm P = 300 kPa T, = 200°C Vi = 30 m/s A = 80 cm AIR...

  • Air enters a 16-cm-diameter pipe steadily at 200 kPa and 20°C with a velocity of 5...

    Air enters a 16-cm-diameter pipe steadily at 200 kPa and 20°C with a velocity of 5 m/s. Air is heated as it flows, and it leaves the pipe at 180 kPa and 38°C. The gas constant of air is 0.287 kPa·m3/kg·K. Whats the volumetric flow rate of the inlet/outlet, mass flow rate and velocity & volume flow rate at the exit?

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 360 Inlet pressure: P1 (kPa) = 583 Inlet Velocity: V1 (m/s) = 105 Area at inlet (cm^2) = 8.2 Mach number at the exit = 1.86 a) Determine...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT